A droplet-based microfluidic platform for rapid immobilization of quantum dots on individual magnetic microbeads

被引:11
|
作者
Nguyen, Thu H. [1 ]
Chen, Xiaoming [1 ]
Sedighi, Abootaleb [2 ]
Krull, Ulrich J. [2 ]
Ren, Carolyn L. [1 ]
机构
[1] Univ Waterloo, Dept Mech & Mechatron Engn, 200 Univ Ave West, Waterloo, ON, Canada
[2] Univ Toronto, Dept Chem & Phys Sci, 3359 Mississauga Rd, Mississauga, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Droplet microfluidics; Quantum dots; Electrostatic association; Magnetic beads; RESONANCE ENERGY-TRANSFER; GOLD NANOPARTICLES; SOFT LITHOGRAPHY; DNA; ENCAPSULATION; DONORS; GENERATION; BIOSENSORS; CHANNELS; PROTEIN;
D O I
10.1007/s10404-018-2085-x
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Quantum dots (QDs) provide opportunities for the development of bioassays, biosensors, and drug delivery strategies. Decoration of the surface of QDs offers unique functions such as resistance to non-specific adsorption, selective binding to target molecules, and cellular uptake. The quality of decoration has substantial impact on the functionality of modified QDs. Single-phase microfluidic devices have been demonstrated for decorating QDs with biological molecules. The device substrate can serve as a solid-phase reaction platform, with a limitation being difficulty in the realization of reproducible decoration at high density of coverage of QDs. Magnetic beads (MBs) have been explored as an alternative form of solid-phase reaction platform for decorating QDs. As one example, controlled decoration to achieve unusually high density can be realized by first coating MBs with QDs, followed by the addition of molecules such as DNA oligonucleotides. Uniformity and high density of coatings on QDs have been obtained using MBs for solid-phase reactions in bulk solution, with the further advantage that the MBs offer simplification of procedural steps such as purification. This study explores the use of a droplet microfluidic platform to achieve solid-phase decoration of MBs with QDs, offering control of local reaction conditions beyond that available in bulk solution reactions. A microchannel network with a two-junction in-series configuration was designed and optimized to co-encapsulate one single 1 A mu m MB and many QDs into individual droplets. The microdroplet became the reaction vessel, and enhanced conjugation through the confined environment and fast mixing. A high density of QDs was coated onto the surface of single MB even when using a low concentration of QDs. This approach quickly produced decorated MBs, and significantly reduced QD waste, ameliorating the need to remove excess QDs. The methodology offers a degree of precision to control conjugation processes that cannot be attained in bulk synthesis methods. The proposed droplet microfluidic design can be widely adopted for nanomaterial synthesis using solid-phase assays.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] A Microfluidic Platform for the Rapid Determination of Distribution Coefficients by Gravity-Assisted Droplet-Based Liquid-Liquid Extraction
    Poulsen, Carl Esben
    Wootton, Robert C. R.
    Wolff, Anders
    deMello, Andrew J.
    Elvira, Katherine S.
    ANALYTICAL CHEMISTRY, 2015, 87 (12) : 6265 - 6270
  • [22] A droplet-based microfluidic system capable of droplet formation and manipulation
    Lee, Chen-Yi
    Lin, Yen-Heng
    Lee, Gwo-Bin
    MICROFLUIDICS AND NANOFLUIDICS, 2009, 6 (05) : 599 - 610
  • [23] Droplet-based microfluidic device for multiple-droplet clustering
    Xu, Jing
    Ahn, Byungwook
    Lee, Hun
    Xu, Linfeng
    Lee, Kangsun
    Panchapakesan, Rajagopal
    Oh, Kwang W.
    LAB ON A CHIP, 2012, 12 (04) : 725 - 730
  • [24] Robustness Analysis for Droplet-Based Microfluidic Networks
    Fink, Gerold
    Grimmer, Andreas
    Hamidovic, Medina
    Haselmayr, Werner
    Wille, Robert
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2020, 39 (10) : 2696 - 2707
  • [25] Programmable droplet-based microfluidic serial dilutor
    Rho, Hoon Suk
    Yang, Yoonsun
    Terstappen, Leon W. M. M.
    Gardeniers, Han
    Le Gac, Severine
    Habibovic, Pamela
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2020, 91 : 231 - 239
  • [26] A droplet-based microfluidic system capable of droplet formation and manipulation
    Chen-Yi Lee
    Yen-Heng Lin
    Gwo-Bin Lee
    Microfluidics and Nanofluidics, 2009, 6 : 599 - 610
  • [27] An integrated and multi-functional droplet-based microfluidic platform for digital DNA amplification
    Wang, Yuan
    Zhou, Xiaoyu
    Yang, Zihan
    Xu, Tao
    Fu, Huayang
    Fong, Chi-Chun
    Sun, Jiayu
    Chin, Y. Rebecca
    Zhang, Liang
    Guan, Xinyuan
    Yang, Mengsu
    BIOSENSORS & BIOELECTRONICS, 2024, 246
  • [28] Automated Droplet-Based Microfluidic Platform for Multiplexed Analysis of Biochemical Markers in Small Volumes
    Cedillo-Alcantar, Diana F.
    Han, Yong Duk
    Choi, Jonghoon
    Garcia-Cordero, Jose L.
    Revzin, Alexander
    ANALYTICAL CHEMISTRY, 2019, 91 (08) : 5133 - 5141
  • [29] On-demand droplet release for droplet-based microfluidic system
    Wang, Wei
    Yang, Chun
    Liu, YingShuai
    Li, Chang Ming
    LAB ON A CHIP, 2010, 10 (05) : 559 - 562
  • [30] Lysozyme Crystallization in Droplet-based Microfluidic Device
    Ko, Kwan-Young
    Kim, In-Ho
    KOREAN CHEMICAL ENGINEERING RESEARCH, 2013, 51 (06): : 760 - 765