Periodic manifolds, spectral gaps, and eigenvalues in gaps

被引:0
|
作者
Post, O [1 ]
机构
[1] Rhein Westfal TH Aachen, Inst Reine & Angew Math, D-52062 Aachen, Germany
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate spectral properties of the Laplace operator on a class of non-compact Riemannian manifolds. We prove that for a given number N we can construct a periodic manifold such that the essential spectrum of the corresponding Laplacian has at least N open gaps. Furthermore, by perturbing the periodic metric of the manifold locally we can prove the existence of eigenvalues in a gap of the essential spectrum.
引用
收藏
页码:251 / 260
页数:10
相关论文
共 50 条
  • [11] Semiclassical asymptotics and spectral gaps for periodic magnetic Schrodinger operators on covering manifolds
    Kordyukov, Yuri A.
    C(STAR)-ALGEBRAS AND ELLIPTIC THEORY, 2006, : 129 - 150
  • [12] On the Eigenvalues of Spectral Gaps of Elliptic PDEs on Waveguides
    Salma Aljawi
    Marco Marletta
    Integral Equations and Operator Theory, 2023, 95
  • [13] On the Eigenvalues of Spectral Gaps of Elliptic PDEs on Waveguides
    Aljawi, Salma
    Marletta, Marco
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2023, 95 (01)
  • [14] Spectral gaps for periodic piezoelectric waveguides
    Nazarov, Sergei A.
    Taskinen, Jari
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (06): : 3017 - 3047
  • [15] Spectral gaps for periodic piezoelectric waveguides
    Sergei A. Nazarov
    Jari Taskinen
    Zeitschrift für angewandte Mathematik und Physik, 2015, 66 : 3017 - 3047
  • [16] Spectral gaps, inertial manifolds and kinematic dynamos
    Núñez, M
    PHYSICS LETTERS A, 2005, 346 (04) : 292 - 295
  • [17] Complete manifolds with bounded curvature and spectral gaps
    Schoen, Richard
    Hung Tran
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (04) : 2584 - 2606
  • [18] MAGNETIC BARRIERS OF COMPACT SUPPORT AND EIGENVALUES IN SPECTRAL GAPS
    Hempel, Rainer
    Besch, Alexander
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2003,
  • [19] Spectral gaps for classical waves in periodic structures
    Economou, E.N.
    Sigalas, M.
    NATO ASI Series, Series B: Physics, 1993, 308
  • [20] Extremal spectral gaps for periodic Schrodinger operators
    Kao, Chiu-Yen
    Osting, Braxton
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2019, 25