Periodic manifolds, spectral gaps, and eigenvalues in gaps

被引:0
|
作者
Post, O [1 ]
机构
[1] Rhein Westfal TH Aachen, Inst Reine & Angew Math, D-52062 Aachen, Germany
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate spectral properties of the Laplace operator on a class of non-compact Riemannian manifolds. We prove that for a given number N we can construct a periodic manifold such that the essential spectrum of the corresponding Laplacian has at least N open gaps. Furthermore, by perturbing the periodic metric of the manifold locally we can prove the existence of eigenvalues in a gap of the essential spectrum.
引用
收藏
页码:251 / 260
页数:10
相关论文
共 50 条