A 256-site 3D CMOS microelectrode array for multipoint stimulation and recording in the central nervous system

被引:0
|
作者
Gingerich, MD [1 ]
Hetke, JF [1 ]
Anderson, DJ [1 ]
Wise, KD [1 ]
机构
[1] Univ Michigan, Dept Elect Engn & Comp Sci, Engn Res Ctr Wireless Integrated MicroSyst, Ann Arbor, MI 48109 USA
关键词
biosensors; microelectrode; neural probe;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
This paper reports a four-channel 256-site three-dimensional (3D) microelectrode array assembly for use in multi-point neural stimulation and recording. The array is composed of multiple planar 2D multisite probes each of which includes on-chip CMOS circuitry for 3D addressing as well as per-channel 1-of-16 site selection. Optimization of the fabrication sequence enables the use of platform fuses and achieves high yield. The 3D assembly utilizes a simple serial data scheme loaded via programmable platform-based fused interconnects, making different array sizes possible. The fully-tested probes are in use mapping functional interconnections in the central nervous system.
引用
收藏
页码:416 / 419
页数:4
相关论文
共 40 条
  • [21] Towards human central nervous system in vitromodels for preclinical research: strategies for 3D neural cell culture
    Daniel Simão
    Inês Costa
    Margarida Serra
    Johannes Schwarz
    Catarina Brito
    Paula M Alves
    BMC Proceedings, 5 (Suppl 8)
  • [22] Deuterium metabolic imaging for 3D mapping of glucose metabolism in humans with central nervous system lesions at 3T
    Adamson, Philip M.
    Datta, Keshav
    Watkins, Ron
    Recht, Lawrence D.
    Hurd, Ralph E.
    Spielman, Daniel M.
    MAGNETIC RESONANCE IN MEDICINE, 2024, 91 (01) : 39 - 50
  • [23] Human central nervous system 3D in vitro models for pre-clinical assessment of gene therapy vectors
    Simao, D.
    Pinto, C.
    Fernandes, P.
    Saggio, I.
    Collinson, L.
    Schiavo, G.
    Kremer, E.
    Alves, P.
    Brito, C.
    HUMAN GENE THERAPY, 2016, 27 (11) : A50 - A50
  • [24] 3D reconstruction of the cardiovascular and central nervous system of a human embryo Carnegie-stage 15 - Case report
    Arnold, WH
    Kleiner, A
    ANNALS OF ANATOMY-ANATOMISCHER ANZEIGER, 2004, 186 (02) : 133 - 139
  • [25] Normal sonographic development of the central nervous system from the second trimester onwards using 2D, 3D and transvaginal sonography
    Monteagudo, Ana
    Timor-Tritsch, Ilan E.
    PRENATAL DIAGNOSIS, 2009, 29 (04) : 326 - 339
  • [26] 3D double inversion recovery MR imaging: Clinical applications and usefulness in a wide spectrum of central nervous system diseases
    Umino, Maki
    Maeda, Masayuki
    Ii, Yuichiro
    Tomimoto, Hidekazu
    Sakuma, Hajime
    JOURNAL OF NEURORADIOLOGY, 2019, 46 (02) : 107 - 116
  • [27] Glioblastoma and primary central nervous system lymphoma: Preoperative differentiation by using MRI-based 3D texture analysis
    Xiao, Dong-Dong
    Yan, Peng-Fei
    Wang, Yu-Xuan
    Osman, Mohamed Saied
    Zhao, Hong-Yang
    CLINICAL NEUROLOGY AND NEUROSURGERY, 2018, 173 : 84 - 90
  • [28] Phenotypic changes on central nervous system (CNS) tumor cell lines cultured in vitro 2D and 3D models and treated with cisplatin
    Perez Goncalves, Bryan Ortero
    Pinheiro dos Santos, Gabryella Soares
    de Andrade, Warne Pedro
    Fialho, Silvia Ligorio
    Gomes, Dawidson Assis
    Silva, Luciana Maria
    ACTA HISTOCHEMICA, 2021, 123 (06)
  • [29] 3D pseudo-continuous arterial spin labeling-MRI (3D PCASL-MRI) in the differential diagnosis between glioblastomas and primary central nervous system lymphomas
    Batalov, A., I
    Afandiev, R. M.
    Zakharova, N. E.
    Pogosbekyan, E. L.
    Shulgina, A. A.
    Kobyakov, G. L.
    Potapov, A. A.
    Pronin, I. N.
    NEURORADIOLOGY, 2022, 64 (08) : 1539 - 1545
  • [30] 3D pseudo-continuous arterial spin labeling-MRI (3D PCASL-MRI) in the differential diagnosis between glioblastomas and primary central nervous system lymphomas
    A. I. Batalov
    R. M. Afandiev
    N. E. Zakharova
    E. L. Pogosbekyan
    A. A. Shulgina
    G. L. Kobyakov
    A. A. Potapov
    I. N. Pronin
    Neuroradiology, 2022, 64 : 1539 - 1545