Clustering subgaussian mixtures with k-means

被引:0
|
作者
Mixon, Dustin G. [1 ]
Villar, Soledad [2 ]
Ward, Rachel [2 ]
机构
[1] US Air Force, Inst Technol, Dept Math & Stat, Washington, DC 20330 USA
[2] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We introduce a model-free, parameter-free relaxand-round algorithm for k-means clustering, based on a semidefinite programming relaxation (SDP) due to Peng and Wei [1]. The algorithm interprets the SDP output as a denoised version of the original data and then rounds this output to a hard clustering. We analyze the performance of this algorithm in the setting where the data is drawn from a subgaussian mixture model. We also study the fundamental limits of estimating subgaussian centers with k-means clustering in order to compare our approximation guarantee to the theoretically optimal k-means clustering solution. In particular, our guarantee has no dependence on the number of points, and for equidistant clusters with O (k) separation, our guarantee is optimal up to a factor of k.
引用
下载
收藏
页数:5
相关论文
共 50 条
  • [41] Spectral relaxation for K-means clustering
    Zha, HY
    He, XF
    Ding, C
    Simon, H
    Gu, M
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 14, VOLS 1 AND 2, 2002, 14 : 1057 - 1064
  • [42] Selective inference for k-means clustering
    Chen, Yiqun T.
    Witten, Daniela M.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2023, 24
  • [43] Locality Sensitive K-means Clustering
    Liu, Chlen-Liang
    Hsai, Wen-Hoar
    Chang, Tao-Hsing
    JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2018, 34 (01) : 289 - 305
  • [44] Clones Clustering Using K-Means
    Ashish, Aveg
    PROCEEDINGS OF THE 10TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS AND CONTROL (ISCO'16), 2016,
  • [45] Outliers in rough k-means clustering
    Peters, G
    PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PROCEEDINGS, 2005, 3776 : 702 - 707
  • [46] Modified k-Means Clustering Algorithm
    Patel, Vaishali R.
    Mehta, Rupa G.
    COMPUTATIONAL INTELLIGENCE AND INFORMATION TECHNOLOGY, 2011, 250 : 307 - +
  • [47] Stability analysis in K-means clustering
    Steinley, Douglas
    BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 2008, 61 : 255 - 273
  • [48] Discriminative K-Means Laplacian Clustering
    Chao, Guoqing
    NEURAL PROCESSING LETTERS, 2019, 49 (01) : 393 - 405
  • [49] A notion of stability for k-means clustering
    Le Gouic, T.
    Paris, Q.
    ELECTRONIC JOURNAL OF STATISTICS, 2018, 12 (02): : 4239 - 4263
  • [50] Random Projection for k-means Clustering
    Sieranoja, Sami
    Franti, Pasi
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, ICAISC 2018, PT I, 2018, 10841 : 680 - 689