Evaluating latent class analysis models in qualitative phenotype identification

被引:429
|
作者
Yang, CC [1 ]
机构
[1] Natl Taichung Teachers Coll, Grad Sch Educ Measurement & Stat, Taichung 403, Taiwan
关键词
phenotype identifications; latent class analysis; information criteria; model selections; E-M algorithm;
D O I
10.1016/j.csda.2004.11.004
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The paper is aimed to investigate the performance of information criteria in selecting latent class analysis models which are often used in research of phenotype identification. Six information criteria and a sample size adjustment (Psychometrika 52 (1987) 333) are compared under various sample sizes and model dimensionalities. The simulation design is particularly meaningful for phenotypic research in practice. Results show that improvements by the sample size adjustment are considerable. In addition, the sample size and model dimensionality effects are found to be influential in the simulation study. (c) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:1090 / 1104
页数:15
相关论文
共 50 条
  • [21] Embedding latent class regression and latent class distal outcome models into cluster-weighted latent class analysis: a detailed simulation experiment
    Di Mari, Roberto
    Punzo, Antonio
    Bakk, Zsuzsa
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2023, 65 (03) : 213 - 233
  • [22] Bootstrapping latent class models
    Dias, JG
    Classification - the Ubiquitous Challenge, 2005, : 121 - 128
  • [23] Structural latent class models
    Formann, AK
    Kohlmann, T
    SOCIOLOGICAL METHODS & RESEARCH, 1998, 26 (04) : 530 - 565
  • [24] Latent class CUB models
    Leonardo Grilli
    Maria Iannario
    Domenico Piccolo
    Carla Rampichini
    Advances in Data Analysis and Classification, 2014, 8 : 105 - 119
  • [25] Multilevel latent class models
    Vermunt, JK
    SOCIOLOGICAL METHODOLOGY, VOL 33, 2003, 33 : 213 - 239
  • [26] Latent class CUB models
    Grilli, Leonardo
    Iannario, Maria
    Piccolo, Domenico
    Rampichini, Carla
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2014, 8 (01) : 105 - 119
  • [27] Latent class models for classification
    Vermunt, JK
    Magidson, J
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2003, 41 (3-4) : 531 - 537
  • [28] NOTE ON EFFICIENT ESTIMATION AND LOCAL IDENTIFICATION IN LATENT CLASS ANALYSIS
    MCHUGH, RB
    PSYCHOMETRIKA, 1958, 23 (03) : 273 - 274
  • [29] Latent class analysis identification of prurigo nodularis comorbidity phenotypes
    Wongvibulsin, Shannon
    Parthasarathy, Varsha
    Pahalyants, Vartan
    Murphy, William
    Sutaria, Nishadh
    Roh, Youkyung S.
    Bordeaux, Zachary A.
    Deng, Junwen
    Taylor, Matthew T.
    Semenov, Yevgeniy R.
    Kwatra, Shawn G.
    BRITISH JOURNAL OF DERMATOLOGY, 2022, 186 (05) : 903 - 905
  • [30] A Bootstrap Approach for Evaluating Uncertainty in the Number of Groups Identified by Latent Class Growth Models
    Mesidor, Miceline
    Sirois, Caroline
    Simard, Marc
    Talbot, Denis
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2023, 192 (11) : 1896 - 1903