Rayleigh-Taylor instability in accelerated solid media

被引:10
|
作者
Piriz, A. R. [1 ,2 ,3 ]
Sun, Y. B. [1 ,2 ,3 ]
Tahir, N. A. [4 ]
机构
[1] Univ Castilla La Mancha, ETSI Ind, E-13071 Ciudad Real, Spain
[2] Univ Castilla La Mancha, CYTEMA, E-13071 Ciudad Real, Spain
[3] Univ Castilla La Mancha, Inst Invest Energet, E-13071 Ciudad Real, Spain
[4] GSI Helmholtzzentrum Schwerionenforsch Darmstadt, Planckstr 1, D-64291 Darmstadt, Germany
关键词
hydrodynamic instabilities; Rayleigh-Taylor instability; high energy density physics; ELASTIC-PLASTIC SOLIDS; NUMERICAL SIMULATIONS; HIGH-PRESSURE; GROWTH; VISCOSITY;
D O I
10.1088/0143-0807/38/1/015003
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
A linear study of the Rayleigh-Taylor instability based on momentum conservation and the consideration of an irrotational velocity field for incompressible perturbations is discussed. The theory allows for a very appealing physical picture and for a relatively simple description of the main features of the instability. As a result, it is suitable for the study of the very complex problem of the instability of accelerated solids with non-linear elastic-plastic constitutive properties, which cannot be studied by the usual normal modes approach. The elastic to plastic transition occurring early in the instability process determines the entire evolution and makes the instability exhibit behavior that cannot be captured by an asymptotic analysis.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] STABILIZATION OF THE RAYLEIGH-TAYLOR INSTABILITY WITH CONVECTION IN AN ABLATIVELY ACCELERATED LASER PLASMA
    BUDKO, AB
    LIBERMAN, MA
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1992, 102 (04): : 1140 - 1150
  • [32] Numerical simulation of Rayleigh-Taylor instability in inviscid and viscous media
    Doludenko, A. N.
    Fortova, S. V.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2015, 55 (05) : 874 - 882
  • [33] RAYLEIGH-TAYLOR INSTABILITY IN TWO-FLUID AND STRATIFIED MEDIA
    Yakovenko, Sergey N.
    PROCEEDINGS OF CHT-12 - ICHMT INTERNATIONAL SYMPOSIUM ON ADVANCES IN COMPUTATIONAL HEAT TRANSFER, 2012, : 1409 - 1424
  • [34] Numerical simulation of Rayleigh-Taylor instability in inviscid and viscous media
    A. N. Doludenko
    S. V. Fortova
    Computational Mathematics and Mathematical Physics, 2015, 55 : 874 - 882
  • [35] A new approach to Rayleigh-Taylor instability:: Application to accelerated elastic solids
    Piriz, A. R.
    Cela, J. J. Lopez
    Moreno, M. C. Serna
    Cortazar, O. D.
    Tahir, N. A.
    Hoffmann, D. H. H.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2007, 577 (1-2): : 250 - 256
  • [36] Linear Rayleigh-Taylor instability in an accelerated Newtonian fluid with finite width
    Piriz, S. A.
    Piriz, A. R.
    Tahir, N. A.
    PHYSICAL REVIEW E, 2018, 97 (04)
  • [37] Asymptotic behavior of the Rayleigh-Taylor instability
    Duchemin, L
    Josserand, C
    Clavin, P
    PHYSICAL REVIEW LETTERS, 2005, 94 (22)
  • [38] Nonlinear saturation of the Rayleigh-Taylor instability
    Das, A
    Mahajan, S
    Kaw, P
    Sen, A
    Benkadda, S
    Verga, A
    PHYSICS OF PLASMAS, 1997, 4 (04) : 1018 - 1027
  • [40] NUMERICAL STUDY OF THE RAYLEIGH-TAYLOR INSTABILITY
    BABENKO, KI
    PETROVICH, VI
    DOKLADY AKADEMII NAUK SSSR, 1980, 255 (02): : 318 - 322