Representation Learning of Knowledge Graph for Wireless Communication Networks

被引:0
|
作者
He, Shiwen [1 ,2 ,3 ]
Ou, Yeyu [1 ]
Wang, Liangpeng [2 ]
Zhan, Hang [2 ]
Ren, Peng [2 ]
Huang, Yongming [2 ,3 ]
机构
[1] Cent South Univ, Sch Comp Sci & Engn, Changsha 410083, Peoples R China
[2] Purple Mt Labs, Nanjing 211111, Peoples R China
[3] Southeast Univ, Natl Mobile Commun Res Lab, Nanjing 210096, Peoples R China
基金
中国国家自然科学基金;
关键词
Wireless communication network data; knowledge graph; representation learning;
D O I
10.1109/GLOBECOM48099.2022.10001185
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the application of the fifth-generation wireless communication technologies, more smart terminals are being used and generating huge amounts of data, which has prompted extensive research on how to handle and utilize these wireless data. Researchers currently focus on the research on the upper layer application data or studying the intelligent transmission methods concerning a specific problem based on a large amount of data generated by the Monte Carlo simulations. This article aims to understand the endogenous relationship of wireless data by constructing a knowledge graph according to the wireless communication protocols, and domain expert knowledge and further investigating the wireless endogenous intelligence. We firstly construct a knowledge graph of the endogenous factors of wireless core network data collected via a 5G/B5G testing network. Then, a novel model based on graph convolutional neural networks is designed to learn the representation of the graph, which is used to classify graph nodes and simulate the relation prediction. The proposed model realizes the automatic nodes classification and network anomaly cause tracing. It is also applied to the public datasets in an unsupervised manner. Finally, the results show that the classification accuracy of the proposed model is better than the existing unsupervised graph neural network models, such as VGAE and ARVGE.
引用
收藏
页码:1338 / 1343
页数:6
相关论文
共 50 条
  • [21] Knowledge graph representation learning: A comprehensive and experimental overview
    Sellami, Dorsaf
    Inoubli, Wissem
    Farah, Imed Riadh
    Aridhi, Sabeur
    COMPUTER SCIENCE REVIEW, 2025, 56
  • [22] Enhancing Temporal Knowledge Graph Representation with Curriculum Learning
    Liu, Yihe
    Shen, Yi
    Dai, Yuanfei
    ELECTRONICS, 2024, 13 (17)
  • [23] Large-scale knowledge graph representation learning
    Badrouni, Marwa
    Katar, Chaker
    Inoubli, Wissem
    KNOWLEDGE AND INFORMATION SYSTEMS, 2024, 66 (09) : 5479 - 5499
  • [24] Multipath Cross Graph Convolution for Knowledge Representation Learning
    Tian, Luogeng
    Yang, Bailong
    Yin, Xinli
    Kang, Kai
    Wu, Jing
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2021, 2021
  • [25] Predicting MiRNA-Disease Associations by Graph Representation Learning Based on Jumping Knowledge Networks
    Li, Zheng-Wei
    Wang, Qian-Kun
    Yuan, Chang-An
    Han, Peng-Yong
    You, Zhu-Hong
    Wang, Lei
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2023, 20 (05) : 2629 - 2638
  • [26] JKRL: Joint Knowledge Representation Learning of Text Description and Knowledge Graph
    Xu, Guoyan
    Zhang, Qirui
    Yu, Du
    Lu, Sijun
    Lu, Yuwei
    SYMMETRY-BASEL, 2023, 15 (05):
  • [27] A review on the reliability of knowledge graph: from a knowledge representation learning perspective
    Yang, Yunxiao
    Chen, Jianting
    Xiang, Yang
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2025, 28 (01):
  • [28] Numerical Knowledge Representation Learning and Link Prediction over Knowledge Graph
    Huang, Zhen
    Qiu, Xue
    Liu, Yu
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT XIII, ICIC 2024, 2024, 14874 : 371 - 378
  • [29] Research Progress of Knowledge Graph Completion Based on Knowledge Representation Learning
    Yu, Mengbo
    Du, Jianqiang
    Luo, Jigen
    Nie, Bin
    Liu, Yong
    Qiu, Junyang
    Computer Engineering and Applications, 2023, 59 (18) : 59 - 73
  • [30] Understanding the Representation Power of Graph Neural Networks in Learning Graph Topology
    Dehmamy, Nima
    Barabasi, Albert-Laszlo
    Yu, Rose
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32