Zero-Shot Cross-Media Embedding Learning With Dual Adversarial Distribution Network

被引:36
|
作者
Chi, Jingze [1 ]
Peng, Yuxin [1 ]
机构
[1] Peking Univ, Inst Comp Sci & Technol, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
Gallium nitride; Semantics; Media; Correlation; Training; Dogs; Measurement; Cross-media retrieval; zero-shot learning; generative adversarial networks; maximum mean discrepancy; REPRESENTATION; RETRIEVAL;
D O I
10.1109/TCSVT.2019.2900171
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Existing cross-media retrieval methods are mainly based on the condition where the training set covers all the categories in the testing set, which lack extensibility to retrieve data of new categories. Thus, zero-shot cross-media retrieval has been a promising direction in practical application, aiming to retrieve data of new categories (unseen categories), only with data of limited known categories (seen categories) for training. It is challenging for not only the heterogeneous distributions across different media types, but also the inconsistent semantics across seen and unseen categories need to be handled. To address the above issues, we propose dual adversarial distribution network (DADN), to learn common embeddings and explore the knowledge from word-embeddings of different categories. The main contributions are as follows. First, zero-shot cross-media dual generative adversarial networks architecture is proposed, in which two kinds of generative adversarial networks (GANs) for common embedding generation and representation reconstruction form dual processes. The dual GANs mutually promote to model semantic and underlying structure information, which generalizes across different categories on heterogeneous distributions and boosts correlation learning. Second, distribution matching with maximum mean discrepancy criterion is proposed to combine with dual GANs, which enhances distribution matching between common embeddings and category word-embeddings. Finally, adversarial inter-media metric constraint is proposed with an inter-media loss and a quadruplet loss, which further model the inter-media correlation information and improve semantic ranking ability. The experiments on four widely used cross-media datasets demonstrate the effectiveness of our DADN approach.
引用
收藏
页码:1173 / 1187
页数:15
相关论文
共 50 条
  • [31] Cross-class generative network for zero-shot learning
    Liu, Jinlu
    Zhang, Zhaocheng
    Yang, Gang
    INFORMATION SCIENCES, 2021, 555 : 147 - 163
  • [32] Zero-Shot Learning via Structure-Aligned Generative Adversarial Network
    Tang, Chenwei
    He, Zhenan
    Li, Yunxia
    Lv, Jiancheng
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (11) : 6749 - 6762
  • [33] Zero-Shot Learning with Joint Generative Adversarial Networks
    Zhang, Minwan
    Wang, Xiaohua
    Shi, Yueting
    Ren, Shiwei
    Wang, Weijiang
    ELECTRONICS, 2023, 12 (10)
  • [34] Zero-shot Adversarial Quantization
    Liu, Yuang
    Zhang, Wei
    Wang, Jun
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 1512 - 1521
  • [35] Coupling Adversarial Graph Embedding for transductive zero-shot action recognition
    Tian, Yi
    Huang, Yaping
    Xu, Wanru
    Kong, Yu
    NEUROCOMPUTING, 2021, 452 : 239 - 252
  • [36] Dual-level contrastive learning network for generalized zero-shot learning
    Jiaqi Guan
    Min Meng
    Tianyou Liang
    Jigang Liu
    Jigang Wu
    The Visual Computer, 2022, 38 : 3087 - 3095
  • [37] Region interaction and attribute embedding for zero-shot learning
    Hu, Zhengwei
    Zhao, Haitao
    Peng, Jingchao
    Gu, Xiaojing
    INFORMATION SCIENCES, 2022, 609 : 984 - 995
  • [38] Dual-level contrastive learning network for generalized zero-shot learning
    Guan, Jiaqi
    Meng, Min
    Liang, Tianyou
    Liu, Jigang
    Wu, Jigang
    VISUAL COMPUTER, 2022, 38 (9-10): : 3087 - 3095
  • [39] Semantic Contrastive Embedding for Generalized Zero-Shot Learning
    Zongyan Han
    Zhenyong Fu
    Shuo Chen
    Jian Yang
    International Journal of Computer Vision, 2022, 130 : 2606 - 2622
  • [40] Hyperbolic Visual Embedding Learning for Zero-Shot Recognition
    Liu, Shaoteng
    Chen, Jingjing
    Pan, Liangming
    Ngo, Chong-Wah
    Chua, Tat-Seng
    Jiang, Yu-Gang
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, : 9270 - 9278