Zero-Shot Cross-Media Embedding Learning With Dual Adversarial Distribution Network

被引:36
|
作者
Chi, Jingze [1 ]
Peng, Yuxin [1 ]
机构
[1] Peking Univ, Inst Comp Sci & Technol, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
Gallium nitride; Semantics; Media; Correlation; Training; Dogs; Measurement; Cross-media retrieval; zero-shot learning; generative adversarial networks; maximum mean discrepancy; REPRESENTATION; RETRIEVAL;
D O I
10.1109/TCSVT.2019.2900171
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Existing cross-media retrieval methods are mainly based on the condition where the training set covers all the categories in the testing set, which lack extensibility to retrieve data of new categories. Thus, zero-shot cross-media retrieval has been a promising direction in practical application, aiming to retrieve data of new categories (unseen categories), only with data of limited known categories (seen categories) for training. It is challenging for not only the heterogeneous distributions across different media types, but also the inconsistent semantics across seen and unseen categories need to be handled. To address the above issues, we propose dual adversarial distribution network (DADN), to learn common embeddings and explore the knowledge from word-embeddings of different categories. The main contributions are as follows. First, zero-shot cross-media dual generative adversarial networks architecture is proposed, in which two kinds of generative adversarial networks (GANs) for common embedding generation and representation reconstruction form dual processes. The dual GANs mutually promote to model semantic and underlying structure information, which generalizes across different categories on heterogeneous distributions and boosts correlation learning. Second, distribution matching with maximum mean discrepancy criterion is proposed to combine with dual GANs, which enhances distribution matching between common embeddings and category word-embeddings. Finally, adversarial inter-media metric constraint is proposed with an inter-media loss and a quadruplet loss, which further model the inter-media correlation information and improve semantic ranking ability. The experiments on four widely used cross-media datasets demonstrate the effectiveness of our DADN approach.
引用
收藏
页码:1173 / 1187
页数:15
相关论文
共 50 条
  • [1] Dual Adversarial Networks for Zero-shot Cross-media Retrieval
    Chi, Jingze
    Peng, Yuxin
    PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 663 - 669
  • [2] Generative Dual Adversarial Network for Generalized Zero-shot Learning
    Huang, He
    Wang, Changhu
    Yu, Philip S.
    Wang, Chang-Dong
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 801 - 810
  • [3] Cross-modal distribution alignment embedding network for generalized zero-shot learning
    Li, Qin
    Hou, Mingzhen
    Lai, Hong
    Yang, Ming
    NEURAL NETWORKS, 2022, 148 : 176 - 182
  • [4] Dual Adversarial Semantics-Consistent Network for Generalized Zero-Shot Learning
    Ni, Jian
    Zhang, Shanghang
    Xie, Haiyong
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [5] Attentive Region Embedding Network for Zero-shot Learning
    Xie, Guo-Sen
    Liu, Li
    Jin, Xiaobo
    Zhu, Fan
    Zhang, Zheng
    Qin, Jie
    Yao, Yazhou
    Shao, Ling
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 9376 - 9385
  • [6] Adversarial Learning for Zero-Shot Stance Detection on Social Media
    Allaway, Emily
    Srikanth, Malavika
    McKeown, Kathleen
    2021 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL-HLT 2021), 2021, : 4756 - 4767
  • [7] Cross-Domain Adversarial Learning for Zero-Shot Classification
    Liu H.
    Zheng Q.
    Luo M.
    Zhao H.
    Xiao Y.
    Lü Y.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2019, 56 (12): : 2521 - 2535
  • [8] Inductive Generalized Zero-Shot Learning with Adversarial Relation Network
    Yang, Guanyu
    Huang, Kaizhu
    Zhang, Rui
    Goulermas, John Y.
    Hussain, Amir
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2020, PT II, 2021, 12458 : 724 - 739
  • [9] Siamese Contrastive Embedding Network for Compositional Zero-Shot Learning
    Li, Xiangyu
    Yang, Xu
    Wei, Kun
    Deng, Cheng
    Yang, Muli
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 9316 - 9325
  • [10] Discrete Bidirectional Matrix Factorization Hashing for Zero-Shot Cross-Media Retrieval
    Zhang, Donglin
    Wu, Xiao-Jun
    Yu, Jun
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2021, PT II, 2021, 13020 : 524 - 536