Integrating Old and New Paradigms of G1/S Control

被引:157
|
作者
Rubin, Seth M. [1 ]
Sage, Julien [2 ,3 ]
Skotheim, Jan M. [4 ]
机构
[1] Univ Calif Santa Cruz, Dept Chem & Biochem, Santa Cruz, CA 95064 USA
[2] Stanford Univ, Dept Pediat, Sch Med, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Genet, Sch Med, Stanford, CA 94305 USA
[4] Stanford Univ, Dept Biol, Stanford, CA 94305 USA
基金
美国国家卫生研究院;
关键词
PROLIFERATION-QUIESCENCE DECISION; CELL-CYCLE; RESTRICTION POINT; PROTEIN; CANCER; MECHANISMS; PHOSPHORYLATION; INACTIVATION; ACTIVATION; RESISTANCE;
D O I
10.1016/j.molcel.2020.08.020
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Cdk-Rb-E2F pathway integrates external and internal signals to control progression at the G1/S transition of the mammalian cell cycle. Alterations in this pathway are found in most human cancers, and specific cyclin-dependent kinase Cdk4/6 inhibitors are approved or in clinical trials for the treatment of diverse cancers. In the long-standing paradigm for G1/S control, Cdks inactivate the retinoblastoma tumor suppressor protein (Rb) through phosphorylation, which releases E2F transcription factors to drive cell-cycle progression from G1 to S. However, recent observations in the laboratory and clinic challenge central tenets of the current paradigm and demonstrate that our understanding of the Rb pathway and G1/ S control is still incomplete. Here, we integrate these new findings with the previous paradigm to synthesize a current molecular and cellular view of the mammalian G1/S transition. A more complete and accurate understanding of G1/ S control will lead to improved therapeutic strategies targeting the cell cycle in cancer.
引用
收藏
页码:183 / 192
页数:10
相关论文
共 50 条
  • [31] G1/S transcription factors assemble in increasing numbers of discrete clusters through G1 phase
    Black, Labe
    Tollis, Sylvain
    Fu, Guo
    Fiche, Jean-Bernard
    Dorsey, Savanna
    Cheng, Jing
    Ghazal, Ghada
    Notley, Stephen
    Crevier, Benjamin
    Bigness, Jeremy
    Nollmann, Marcelo
    Tyers, Mike
    Royer, Catherine Ann
    JOURNAL OF CELL BIOLOGY, 2020, 219 (09):
  • [32] Integrating the MAP kinase signal into the G1 phase cell cycle machinery
    Roovers, K
    Assoian, RK
    BIOESSAYS, 2000, 22 (09) : 818 - 826
  • [33] Tolerance of Deregulated G1/S Transcription Depends on Critical G1/S Regulon Genes to Prevent Catastrophic Genome Instability
    Caetano, Catia
    Limbo, Oliver
    Farmer, Sarah
    Klier, Steffi
    Dovey, Claire
    Russell, Paul
    de Bruin, Robertus Antonius Maria
    CELL REPORTS, 2014, 9 (06): : 2279 - 2289
  • [34] On certain new formulas for the Horn's hypergeometric functions G1, G2 and G3
    Shehata, Ayman
    Moustafa, Shimaa I.
    AFRIKA MATEMATIKA, 2022, 33 (02)
  • [35] E2Fs link the control of G1/S and G2/M transcription
    Zhu, WC
    Giangrande, PH
    Nevins, JR
    EMBO JOURNAL, 2004, 23 (23): : 4615 - 4626
  • [36] Effects of G1 arrest substances on cells in the G1, S and G2 phases of the cell cycle in Tetrahymena thermophila
    Murata-Hori, M
    Fujishima, M
    EUROPEAN JOURNAL OF PROTISTOLOGY, 2000, 36 (03) : 316 - 318
  • [37] The evolution of a G1/S transcriptional network in yeasts
    Adi Hendler
    Edgar M. Medina
    Nicolas E. Buchler
    Robertus A. M. de Bruin
    Amir Aharoni
    Current Genetics, 2018, 64 : 81 - 86
  • [38] Regulation of the G1/S transition in fission yeast
    Nilsen, EA
    Synnes, M
    Tvegård, T
    Vebo, H
    Diez, A
    Grallert, B
    Boye, E
    YEAST, 2003, 20 : S115 - S115
  • [39] Design Principles of the Yeast G1/S Switch
    Yang, Xiaojing
    Lau, Kai-Yeung
    Sevim, Volkan
    Tang, Chao
    PLOS BIOLOGY, 2013, 11 (10)
  • [40] The plant cell cycle: G1/S regulation
    Wen-Hui Shen
    Euphytica, 2001, 118 : 223 - 236