Niemeier lattices, smooth 4-manifolds and instantons

被引:0
|
作者
Scaduto, Christopher [1 ]
机构
[1] Simons Ctr Geometry & Phys, Stony Brook, NY 11794 USA
关键词
INTERSECTION FORMS; FLOER HOMOLOGY; COHOMOLOGY;
D O I
10.1007/s00208-020-02060-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the set of even positive definite lattices that arise from smooth, simply-connected 4-manifolds bounded by a fixed homology 3-sphere can depend on more than the ranks of the lattices. We provide two homology 3-spheres with distinct sets of such lattices, each containing a distinct nonempty subset of the rank 24 Niemeier lattices.
引用
收藏
页码:549 / 568
页数:20
相关论文
共 50 条
  • [41] Constructing infinitely many smooth structures on small 4-manifolds
    Akhmedov, Anar
    Baykur, R. Inanc
    Park, B. Doug
    JOURNAL OF TOPOLOGY, 2008, 1 (02) : 409 - 428
  • [42] Exotic smooth structures on small 4-manifolds with odd signatures
    Anar Akhmedov
    B. Doug Park
    Inventiones mathematicae, 2010, 181 : 577 - 603
  • [44] On embedding of 4-manifolds
    Ghanwat, Abhijeet
    Saha, Kuldeep
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2022, 53 (02): : 479 - 483
  • [45] Surfaces in 4-manifolds
    Fintushel, R
    Stern, RJ
    MATHEMATICAL RESEARCH LETTERS, 1997, 4 (06) : 907 - 914
  • [46] SEMIHANDLES AND 4-MANIFOLDS
    WEBSTER, DE
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1974, 23 (12) : 1199 - 1202
  • [47] MULTISECTIONS OF 4-MANIFOLDS
    Islambouli, Gabriel
    Naylor, Patrick
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 377 (02) : 1033 - 1068
  • [48] ISOTOPY OF 4-MANIFOLDS
    QUINN, F
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1986, 24 (03) : 343 - 372
  • [49] SMOOTHING 4-MANIFOLDS
    LASHOF, R
    INVENTIONES MATHEMATICAE, 1971, 14 (03) : 197 - &
  • [50] Trisecting 4-manifolds
    Gay, David T.
    Kirby, Robion
    GEOMETRY & TOPOLOGY, 2016, 20 (06) : 3097 - 3132