Automatic Localization of Target Vertebrae in Spine Surgery using Fast CT-to-Fluoroscopy (3D-2D) Image Registration

被引:4
|
作者
Otake, Y. [1 ,2 ]
Schafer, S. [2 ]
Stayman, J. W. [2 ]
Zbijewski, W. [2 ]
Kleinszig, G. [3 ]
Graumann, R. [3 ]
Khanna, A. J. [4 ]
Siewerdsen, J. H. [1 ,2 ]
机构
[1] Johns Hopkins Univ, Dept Comp Sci, Baltimore, MD 21218 USA
[2] Johns Hopkins Univ, Dept Biomed Engn, Baltimore, MD USA
[3] Siemens AG, Healthcare Sect, Clin Prod Div, Erlangen, Germany
[4] Johns Hopkins Med Inst, Dept Orthopaed Surg, Baltimore, MD USA
基金
美国国家卫生研究院;
关键词
3D-2D registration; minimally invasive spine surgery; level localization; image-guided surgery; wrong-site surgery; wrong-level surgery; patient safety; fluoroscopy;
D O I
10.1117/12.911308
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Localization of target vertebrae is an essential step in minimally invasive spine surgery, with conventional methods relying on "level counting" - i.e., manual counting of vertebrae under fluoroscopy starting from readily identifiable anatomy (e. g., the sacrum). The approach requires an undesirable level of radiation, time, and is prone to counting errors due to the similar appearance of vertebrae in projection images; wrong-level surgery occurs in 1 of every similar to 3000 cases. This paper proposes a method to automatically localize target vertebrae in x-ray projections using 3D-2D registration between preoperative CT (in which vertebrae are preoperatively labeled) and intraoperative fluoroscopy. The registration uses an intensity-based approach with a gradient-based similarity metric and the CMA-ES algorithm for optimization. Digitally reconstructed radiographs (DRRs) and a robust similarity metric are computed on GPU to accelerate the process. Evaluation in clinical CT data included 5,000 PA and LAT projections randomly perturbed to simulate human variability in setup of mobile intraoperative C-arm. The method demonstrated 100% success for PA view (projection error: 0.42mm) and 99.8% success for LAT view (projection error: 0.37mm). Initial implementation on GPU provided automatic target localization within about 3 sec, with further improvement underway via multi-GPU. The ability to automatically label vertebrae in fluoroscopy promises to streamline surgical workflow, improve patient safety, and reduce wrong-site surgeries, especially in large patients for whom manual methods are time consuming and error prone.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Automatic Masking for Robust 3D-2D Image Registration in Image-Guided Spine Surgery
    Ketcha, M. D.
    De Silva, T.
    Uneri, A.
    Kleinszig, G.
    Vogt, S.
    Wolinsky, J. -P.
    Siewerdsen, J. H.
    MEDICAL IMAGING 2016: IMAGE-GUIDED PROCEDURES, ROBOTIC INTERVENTIONS, AND MODELING, 2016, 9786
  • [2] 3D-2D Image Registration for Target Localization in Spine Surgery: Comparison of Similarity Metrics Against Robustness to Content Mismatch
    De Silva, T.
    Uneri, A.
    Reaungamornrat, S.
    Ketcha, M.
    Vogt, S.
    Kleinszig, G.
    Lo, S. F.
    Aygun, N.
    Wolinsky, J. P.
    Gokaslan, Z. L.
    Siewerdsen, J. H.
    MEDICAL PHYSICS, 2015, 42 (06) : 3652 - 3653
  • [3] 3D-2D image registration for target localization in spine surgery: investigation of similarity metrics providing robustness to content mismatch
    De Silva, T.
    Uneri, A.
    Ketcha, M. D.
    Reaungamornrat, S.
    Kleinszig, G.
    Vogt, S.
    Aygun, N.
    Lo, S-F
    Wolinsky, J-P
    Siewerdsen, J. H.
    PHYSICS IN MEDICINE AND BIOLOGY, 2016, 61 (08): : 3009 - 3025
  • [4] Automatic localization of vertebral levels in x-ray fluoroscopy using 3D-2D registration: a tool to reduce wrong-site surgery
    Otake, Y.
    Schafer, S.
    Stayman, J. W.
    Zbijewski, W.
    Kleinszig, G.
    Graumann, R.
    Khanna, A. J.
    Siewerdsen, J. H.
    PHYSICS IN MEDICINE AND BIOLOGY, 2012, 57 (17): : 5485 - 5508
  • [5] A fast and robust technique for 3D-2D registration of CT to single plane X-ray fluoroscopy
    Haque, Md. Nazmul
    Pickering, Mark R.
    Al Muhit, Abdullah
    Frater, Michael R.
    Scarvell, Jennie M.
    Smith, Paul N.
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION, 2014, 2 (02): : 76 - 89
  • [6] Intraoperative evaluation of device placement in spine surgery using known-component 3D-2D image registration
    Uneri, A.
    De Silva, T.
    Goerres, J.
    Jacobson, M. W.
    Ketcha, M. D.
    Reaungamornrat, S.
    Kleinszig, G.
    Vogt, S.
    Khanna, A. J.
    Osgood, G. M.
    Wolinsky, J-P
    Siewerdsen, J. H.
    PHYSICS IN MEDICINE AND BIOLOGY, 2017, 62 (08): : 3330 - 3351
  • [7] Elastic 3D-2D Image Registration
    Striewski, Paul
    Wirth, Benedikt
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2022, 64 (05) : 443 - 462
  • [8] Deformable 3D-2D registration for CT and its application to low dose tomographic fluoroscopy
    Flach, Barbara
    Brehm, Marcus
    Sawall, Stefan
    Kachelriess, Marc
    PHYSICS IN MEDICINE AND BIOLOGY, 2014, 59 (24): : 7865 - 7887
  • [9] Operating Room Quality Assurance (ORQA) for Spine Surgery Using Known-Component 3D-2D Image Registration
    Uneri, A.
    De Silva, T.
    Goerres, J.
    Jacobson, M.
    Ketcha, M.
    Reaungamornrat, S.
    Kleinszig, G.
    Vogt, S.
    Khanna, A.
    Wolinsky, J.
    Siewerdsen, J.
    MEDICAL PHYSICS, 2016, 43 (06) : 3792 - 3792
  • [10] 3D-2D IMAGE REGISTRATION BY NONLINEAR REGRESSION
    Gouveia, Ana R.
    Metz, Coert
    Freire, Luis
    Klein, Stefan
    2012 9TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2012, : 1343 - 1346