HYPERSURFACES IN NON-FLAT LORENTZIAN SPACE FORMS SATISFYING Lkψ)=Aψ+b

被引:10
|
作者
Lucas, Pascual [1 ]
Fabian Ramirez-Ospina, H. [1 ]
机构
[1] Univ Murcia, Dept Matemat, E-30100 Murcia, Spain
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2012年 / 16卷 / 03期
关键词
Linearized operator L-k; lsoparametric hypersurface; k-Maximal hypersurface; Takahashi theorem; Higher order mean curvatures; Newton transformations; ISOPARAMETRIC HYPERSURFACES; IMMERSIONS; EXTENSION;
D O I
10.11650/twjm/1500406685
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study hypersurfaces either in the De Sitter space S-1(n+1) C R-1(n+2) or in the anti De Sitter space H-1(n+1) subset of R-2(n+2) whose position vector psi satisfies the condition L-k psi = A psi + b, where L-k is the linearized operator of the (k + 1)-th mean curvature of the hypersurface, for a fixed k = 0, ... , n-1, A is an (n+2) x (n+2) constant matrix and b is a constant vector in the corresponding pseudo-Euclidean space. For every k, we prove that when A is self-adjoint and b = 0, the only hypersurfaces satisfying that condition are hypersurfaces with zero (k + 1)th mean curvature and constant k-th mean curvature, open pieces of standard pseudo-Riemannian products in S-1(n+1) (S-1(m)(r)xS(n-m)(root 1 - r(2)), H-m (-r) x Sn-m (root 1 + r(2)), S-1(m)(root 1 - r(2)) x Sn-m(root r(2) - 1) x Sn-m(r)), open pieces of standard pseudo-Riemannian products in H-1(n+1) (H-1(m) x Sn-m(root r(2)-1), H-m(-root 1+ r(2)) x S-1(n-m)(r), S-1(m)(root r(2) - 1) x Hn-m(-r), H-m(-root 1-r(2)) x Hn-m(-r) and open pieces of a quadratic hypersurface m {x is an element of M-c(n+1) < Rx, x > = d}, where R is a self-adjoint constant matrix whose minimal polynomial is t(2) + at + b, a(2) - 4b <= 0, and M-c(n+1) stands for S-1(n+1) subset of R-1(n+2) or H-1(n+1) subset of R-2(n+2). When the k-th mean curvature is constant and b is a non-zero constant vector, we show that the hypersurface is totally umbilical, and then we also obtain a classification result (see Theorem 2).
引用
收藏
页码:1173 / 1203
页数:31
相关论文
共 50 条
  • [41] k-th generalized Tanaka-Webster Einstein real hypersurfaces in non-flat complex space forms
    Kaimakamis, George
    Panagiotidou, Konstantina
    de Dios Perez, Juan
    [J]. JOURNAL OF GEOMETRY, 2019, 110 (01)
  • [42] Comparison of Differential Operators with Lie Derivative of Three-Dimensional Real Hypersurfaces in Non-Flat Complex Space Forms
    Kaimakamis, George
    Panagiotidou, Konstantina
    de Dios Perez, Juan
    [J]. MATHEMATICS, 2018, 6 (05)
  • [43] Space-like isoparametric hypersurfaces in Lorentzian space forms
    Li Z.-Q.
    Xie X.-H.
    [J]. Frontiers of Mathematics in China, 2006, 1 (1) : 130 - 137
  • [44] Pythagorean Isoparametric Hypersurfaces in Riemannian and Lorentzian Space Forms
    Aydin, Muhittin Evren
    Mihai, Adela
    Ozgur, Cihan
    [J]. AXIOMS, 2022, 11 (02)
  • [45] Hypersurfaces of two space forms and conformally flat hypersurfaces
    S. Canevari
    R. Tojeiro
    [J]. Annali di Matematica Pura ed Applicata (1923 -), 2018, 197 : 1 - 20
  • [46] Hypersurfaces of two space forms and conformally flat hypersurfaces
    Canevari, S.
    Tojeiro, R.
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2018, 197 (01) : 1 - 20
  • [47] Derivatives of the Operator φA - Aφ on a Real Hypersurface in Non-flat Complex Space Forms
    Kaimakamis, George
    Panagiotidou, Konstantina
    de Dios Perez, Juan
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (01) : 267 - 282
  • [48] Null Screen Isoparametric Hypersurfaces in Lorentzian Space Forms
    Navarro, Matias
    Palmas, Oscar
    Solis, Didier A.
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2018, 15 (06)
  • [49] ON THE QUADRIC CMC SPACELIKE HYPERSURFACES IN LORENTZIAN SPACE FORMS
    Aquino, Cicero P.
    de Lima, Henrique F.
    dos Santos, Fabio R.
    [J]. COLLOQUIUM MATHEMATICUM, 2016, 145 (01) : 89 - 98
  • [50] Null Screen Isoparametric Hypersurfaces in Lorentzian Space Forms
    Matias Navarro
    Oscar Palmas
    Didier A. Solis
    [J]. Mediterranean Journal of Mathematics, 2018, 15