Improved fuzzy C-means clustering in the process of exudates detection using mathematical morphology

被引:10
|
作者
Wisaeng, Kittipol [1 ]
Sa-ngiamvibool, Worawat [1 ]
机构
[1] Mahasarakham Univ, Fac Engn, Elect & Comp, Maha Sarakham 44150, Thailand
关键词
Exudate detection; Diabetic retinopathy; Digital retinal image; Fuzzy C-means clustering; Naive Bayesian; Support vector machine; Mathematical morphology; DIABETIC-RETINOPATHY; FUNDUS IMAGES;
D O I
10.1007/s00500-017-2532-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Exudates are a common complication of diabetic retinopathy and the leading cause of blindness in the developing countries, especially in Thailand. The digital retinal images are usually interpreted visually by an expert ophthalmologist in order to diagnose exudates. However, detecting exudates in a large number of the digital retinal images is mostly manual and very expensive in expert ophthalmologist time and subject to human errors. In this research, we propose a novel retinal image analysis for detecting exudates through image preprocessing methods, i.e., histogram matching, local contrast enhancement, median filter, color space selection, and optic disc localization. Our in-depth retinal analysis indicates that the overall image quality is sensitive to the quality score. In the detection process, the exudates are detected by using na < ve Bayesian classifier, support vector machine, and fuzzy C-means clustering method. Afterward, the exudates extracted from fuzzy C-means clustering are used as input to the mathematical morphology to obtain the final exudates detection quality score. Additionally, the optimal parameters of the mathematical morphology will increase the accuracy of the results from merely fuzzy C-means clustering method by 12.05%. The combination of these methods demonstrated an overall pixel-based accuracy of 97.45% including 97.12% sensitivity and 97.89% specificity.
引用
收藏
页码:2753 / 2764
页数:12
相关论文
共 50 条
  • [31] Mixed fuzzy C-means clustering
    Demirhan, Haydar
    INFORMATION SCIENCES, 2025, 690
  • [32] On Tolerant Fuzzy c-Means Clustering
    Hamasuna, Yukihiro
    Endo, Yasunori
    Miyamoto, Sadaaki
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2009, 13 (04) : 421 - 428
  • [33] Fuzzy C-Means and Fuzzy TLBO for Fuzzy Clustering
    Krishna, P. Gopala
    Bhaskari, D. Lalitha
    PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATION TECHNOLOGIES, IC3T 2015, VOL 1, 2016, 379 : 479 - 486
  • [34] Fuzzy model generation using Subtractive and Fuzzy C-Means clustering
    Lalit Mohan Goyal
    Mamta Mittal
    Jasleen Kaur Sethi
    CSI Transactions on ICT, 2016, 4 (2-4) : 129 - 133
  • [35] An Improved Fuzzy C-Means Clustering for Brain MR Images Segmentation
    Chen, Aiguo
    Yan, Haoyuan
    JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2021, 11 (02) : 386 - 390
  • [36] An Improved Fuzzy C-Means Clustering Algorithm and Application in Meteorological Data
    Li, Hongfei
    Wang, Fuling
    Zheng, Shijue
    Gao, Li
    ADVANCED MATERIALS SCIENCE AND TECHNOLOGY, PTS 1-2, 2011, 181-182 : 545 - 550
  • [37] An improved C-means clustering algorithm
    Pi, Dechang
    Xian, Chuhua
    Qin, Xiaolin
    COMPUTER SYSTEMS SCIENCE AND ENGINEERING, 2008, 23 (01): : 43 - 49
  • [38] MEDICAL IMAGE REGISTRATION BASED ON IMPROVED FUZZY C-MEANS CLUSTERING
    Pan, Meisen
    Jiang, Jianjun
    Zhang, Fen
    Rong, Qiusheng
    BIOMEDICAL ENGINEERING-APPLICATIONS BASIS COMMUNICATIONS, 2015, 27 (04):
  • [39] Optimization of the clusters number of An improved fuzzy C-means clustering algorithm
    Xu Yejun
    10TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE & EDUCATION (ICCSE 2015), 2015, : 931 - 935
  • [40] Image Enhancement Method based on an Improved Fuzzy C-Means Clustering
    Yang, Libao
    Zenian, Suzelawati
    Zakaria, Rozaimi
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (08) : 855 - 859