NONPARAMETRIC ESTIMATION OF REGRESSION FUNCTIONS WITH DISCRETE REGRESSORS

被引:20
|
作者
Ouyang, Desheng [2 ]
Li, Qi [3 ,4 ]
Racine, Jeffrey S. [1 ]
机构
[1] McMaster Univ, Dept Econ, Grad Program Stat, Hamilton, ON L8S 4M4, Canada
[2] Shanghai Univ Finance & Econ, Shanghai, Peoples R China
[3] Texas A&M Univ, College Stn, TX 77843 USA
[4] Tsinghua Univ, Beijing, Peoples R China
关键词
MULTIVARIATE BINARY DISCRIMINATION; SEMIPARAMETRIC ESTIMATION; PROBABILITY DENSITIES; SMOOTHING PARAMETERS; 1ST-PRICE AUCTIONS; KERNEL ESTIMATORS; CROSS-VALIDATION; PROPENSITY SCORE; MODELS; VARIABLES;
D O I
10.1017/S0266466608090014
中图分类号
F [经济];
学科分类号
02 ;
摘要
We consider the problem of estimating a nonparametric regression model containing categorical regressors only. We investigate the theoretical properties of least squares cross-validated smoothing parameter selection, establish the rate of convergence (to zero) of the smoothing parameters for relevant regressors, and show that there is a high probability that the smoothing parameters for irrelevant regressors converge to their upper bound values, thereby automatically smoothing out the irrelevant regressors. A small-scale simulation study shows that the proposed cross-validation-based estimator performs well in finite-sample settings.
引用
收藏
页码:1 / 42
页数:42
相关论文
共 50 条