CHOICE OF REGRESSORS IN NONPARAMETRIC-ESTIMATION

被引:19
|
作者
VIEU, P [1 ]
机构
[1] UNIV TOULOUSE 3,STAT & PROBABIL LAB,CNRS,URA D745,F-31062 TOULOUSE,FRANCE
关键词
CURSE OF DIMENSIONALITY; MULTIVARIATE REGRESSION; NONPARAMETRIC ESTIMATION; VARIABLES SELECTION;
D O I
10.1016/0167-9473(94)90149-X
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
It is well-known that pure nonparametric techniques perform less and less well when the dimension of the regression function increases, because of the sparsness of the data. We attack this curse of dimensionality by proposing a method to select a set of regressors. Optimality with respect to quadratic loss function is shown. Then, simulated examples are presented to illustrate both curse of dimensionality and behaviour of the variables selection procedure.
引用
收藏
页码:575 / 594
页数:20
相关论文
共 50 条