Minimizing NLC-width is NP-complete (extended abstract)

被引:0
|
作者
Gurski, R [1 ]
Wanke, E [1 ]
机构
[1] Univ Dusseldorf, Inst Comp Sci, D-40225 Dusseldorf, Germany
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We show that a graph has tree-width at most 4k-1 if its line graph has NLC-width or clique-width at most k, and that an incidence graph has tree-width at most k if its line graph has NLC-width or clique-width at most k. In [9] it is shown that a line graph has NLC-width at most k + 2 and clique-width at most 2k + 2 if the root graph has tree-width k. Using these bounds we show by a reduction from tree-width minimization that NLC-width minimization is NP-complete.
引用
收藏
页码:69 / 80
页数:12
相关论文
共 50 条
  • [31] Properties of NP-complete sets
    Glasser, C
    Pavan, A
    Selman, AL
    Sengupta, S
    19TH IEEE ANNUAL CONFERENCE ON COMPUTATIONAL COMPLEXITY, PROCEEDINGS, 2004, : 184 - 197
  • [32] CROSSING NUMBER IS NP-COMPLETE
    GAREY, MR
    JOHNSON, DS
    SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1983, 4 (03): : 312 - 316
  • [33] Entropy for NP-complete problems
    Levchenkov, V.S.
    Doklady Akademii Nauk, 2001, 376 (02) : 175 - 178
  • [34] Chained Block is NP-Complete
    Iwamoto, Chuzo
    Ide, Tatsuya
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2024, E107D (03) : 320 - 324
  • [35] The entropy of NP-complete problems
    Levchenkov, VS
    DOKLADY MATHEMATICS, 2001, 63 (01) : 130 - 132
  • [36] SPLITTING NUMBER is NP-complete
    Faria, L
    de Figueiredo, CMH
    Mendonça, CFX
    DISCRETE APPLIED MATHEMATICS, 2001, 108 (1-2) : 65 - 83
  • [37] Strategic Argumentation is NP-Complete
    Governatori, G.
    Olivieri, F.
    Scannapieco, S.
    Rotolo, A.
    Cristani, M.
    21ST EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE (ECAI 2014), 2014, 263 : 399 - 404
  • [38] Decidability of NP-Complete Problems
    A. A. Vagis
    A. M. Gupal
    Cybernetics and Systems Analysis, 2022, 58 : 914 - 916
  • [39] ON ONE NP-COMPLETE PROBLEM
    DEMEL, J
    DEMLOVA, M
    KYBERNETIKA, 1995, 31 (02) : 207 - 211
  • [40] System BV is NP-complete
    Kahramanogullari, Ozan
    ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2006, 143 : 87 - 99