A proximal augmented Lagrangian method for equilibrium problems

被引:2
|
作者
Mashreghi, Javad [1 ]
Nasri, Mostafa [1 ]
机构
[1] Univ Laval, Fac Sci & Genie, Dept Math & Stat, Quebec City, PQ G1V 0A6, Canada
关键词
augmented Lagrangian method; Bregman distance; Bregman projection; cone constraint; equilibrium problem; proximal point method; MULTIPLIER METHODS; POINT METHOD; PENALTY; CONVERGENCE; DUALITY;
D O I
10.1080/00036811.2010.541447
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Considering a recently proposed proximal point method for equilibrium problems, we construct an augmented Lagrangian method for solving the same problem in reflexive Banach spaces with cone constraints generating a strongly convergent sequence to a certain solution of the problem. This is an inexact hybrid method meaning that at a certain iterate, a solution of an unconstrained equilibrium problem is found, allowing a proper error bound, followed by a Bregman projection of the initial iterate onto the intersection of two appropriate halfspaces. Assuming a set of reasonable hypotheses, we provide a full convergence analysis.
引用
收藏
页码:157 / 172
页数:16
相关论文
共 50 条
  • [31] Interior proximal extragradient method for equilibrium problems
    Langenberg, Nils
    [J]. OPTIMIZATION, 2015, 64 (10) : 2145 - 2161
  • [32] Augmented Lagrangian Method for Instantaneously Constrained Reinforcement Learning Problems
    Li, Jingqi
    Fridovich-Keil, David
    Sojoudi, Somayeh
    Tomlin, Claire J.
    [J]. 2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 2982 - 2989
  • [33] Solving Problems With Inconsistent Constraints With a Modified Augmented Lagrangian Method
    Neuenhofen, Martin P.
    Kerrigan, Eric C.
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023, 68 (04) : 2592 - 2598
  • [34] Smoothing augmented Lagrangian method for nonsmooth constrained optimization problems
    Mengwei Xu
    Jane J. Ye
    Liwei Zhang
    [J]. Journal of Global Optimization, 2015, 62 : 675 - 694
  • [35] An Augmented Lagrangian Method for a Class of Inverse Quadratic Programming Problems
    Zhang, Jianzhong
    Zhang, Liwei
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 2010, 61 (01): : 57 - 83
  • [36] An Augmented Lagrangian Method for Cardinality-Constrained Optimization Problems
    Kanzow, Christian
    Raharja, Andreas B.
    Schwartz, Alexandra
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2021, 189 (03) : 793 - 813
  • [37] An augmented Lagrangian optimization method for inflatable structures analysis problems
    Bruyneel, M.
    Jetteur, P.
    Granville, D.
    Langlois, S.
    Fleury, C.
    [J]. STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2006, 32 (05) : 383 - 395
  • [38] An Augmented Lagrangian Method for a Class of Inverse Quadratic Programming Problems
    Jianzhong Zhang
    Liwei Zhang
    [J]. Applied Mathematics and Optimization, 2010, 61
  • [39] An augmented Lagrangian method for optimization problems with structured geometric constraints
    Xiaoxi Jia
    Christian Kanzow
    Patrick Mehlitz
    Gerd Wachsmuth
    [J]. Mathematical Programming, 2023, 199 : 1365 - 1415
  • [40] An augmented Lagrangian method for optimization problems with structured geometric constraints
    Jia, Xiaoxi
    Kanzow, Christian
    Mehlitz, Patrick
    Wachsmuth, Gerd
    [J]. MATHEMATICAL PROGRAMMING, 2023, 199 (1-2) : 1365 - 1415