Stability and thermal conductivity enhancement of carbon nanotube nanofluid using gum arabic

被引:114
|
作者
Rashmi, W. [1 ,2 ]
Ismail, A. F. [1 ,3 ]
Sopyan, I. [1 ,4 ]
Jameel, A. T. [1 ,2 ]
Yusof, F. [1 ,2 ]
Khalid, M. [1 ,2 ]
Mubarak, N. M. [1 ,2 ]
机构
[1] Int Islamic Univ Malaysia, Nanosci & Nanotechnol Res Grp NANORG, Kuala Lumpur 50728, Malaysia
[2] Int Islamic Univ Malaysia, Dept Biotechnol Engn, Kuala Lumpur 50728, Malaysia
[3] Int Islamic Univ Malaysia, Dept Mech Engn, Kuala Lumpur 50728, Malaysia
[4] Int Islamic Univ Malaysia, Dept Mfg & Mat Engn, Kuala Lumpur 50728, Malaysia
关键词
carbon nanotubes; gum arabic; nanofluids; stability; enhanced thermal conductivity; temperature; DISPERSIONS; SURFACTANT; FUNCTIONALIZATION; SOLUBILIZATION; NANOPARTICLES; SUSPENSIONS; SCATTERING; WATER;
D O I
10.1080/17458080.2010.487229
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This experimental study reports on the stability and thermal conductivity enhancement of carbon nanotubes (CNTs) nanofluids with and without gum arabic (GA). The stability of CNT in the presence of GA dispersant in water is systematically investigated by taking into account the combined effect of various parameters, such as sonication time, temperature, dispersant and particle concentration. The concentrations of CNT and GA have been varied from 0.01 to 0.1wt% and from 0.25 to 5 wt%, respectively, and the sonication time has been varied in between 1 and 24 h. The stability of nanofluid is measured in terms of CNT concentration as a function of sediment time using UV-Vis spectrophotometer. Thermal conductivity of CNT nanofluids is measured using KD-2 prothermal conductivity meter from 25 to 60 degrees C. Optimum GA concentration is obtained for the entire range of CNT concentration and 1-2.5wt% of GA is found to be sufficient to stabilise all CNT range in water. Rapid sedimentation of CNTs is observed at higher GA concentration and sonication time. CNT in aqueous suspensions show strong tendency to aggregation and networking into clusters. Stability and thermal conductivity enhancement of CNT nanofluids have been presented to provide a heat transport medium capable of achieving high heat conductivity. Increase in CNT concentrations resulted in the non-linear thermal conductivity enhancement. More than 100-250% enhancement in thermal conductivity is observed for the range of CNT concentration and temperature.
引用
收藏
页码:567 / 579
页数:13
相关论文
共 50 条
  • [31] Carbon Nanotube Modification Using Gum Arabic and Its Effect on the Dispersion and Tensile Properties of Carbon Nanotubes/Epoxy Nanocomposites
    Kim, Man Tae
    Park, Ho Seok
    Hui, David
    Rhee, Kyong Yop
    [J]. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2011, 11 (08) : 7369 - 7373
  • [32] Thermal conductivity enhancement of nanofluid by adding multiwalled carbon nanotubes: Characterization and numerical modeling patterns
    Du, Congcong
    Quyen Nguyen
    Malekahmadi, Omid
    Mardani, Ali
    Jokar, Zahra
    Babadi, Elmira
    D'Orazio, Annunziata
    Karimipour, Arash
    Li, Zhixiong
    Quang-Vu Bach
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020,
  • [33] Thermal conductivity enhancement of functionalized multiwalled carbon nanotube and carbon nanofiber based nano-coolant
    Manap, N. S. N. Abdul
    Yunus, S. S. Mohd
    Mohamad, I. S.
    Husin, M. H. Mohd
    [J]. PROCEEDINGS OF MECHANICAL ENGINEERING RESEARCH DAY 2016, 2016, : 173 - 174
  • [34] Effect of CNT structures on thermal conductivity and stability of nanofluid
    Nasiri, A.
    Shariaty-Niasar, M.
    Rashidi, A. M.
    Khodafarin, R.
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2012, 55 (5-6) : 1529 - 1535
  • [35] Measuring Thermal Conductivity of an Individual Carbon Nanotube Using Raman Spectroscopy
    LI Pei
    FENG Daili
    FENG Yanhui
    LIU Xiaofang
    XIONG Mengya
    ZHANG Xinxin
    LIU Jinhui
    [J]. Journal of Thermal Science, 2022, 31 (04) : 1016 - 1022
  • [36] Effect of dispersion method on thermal conductivity and stability of nanofluid
    Nasiri, Aida
    Shariaty-Niasar, Mojtaba
    Rashidi, Alimorad
    Amrollahi, Azadeh
    Khodafarin, Ramin
    [J]. EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2011, 35 (04) : 717 - 723
  • [37] Measuring Thermal Conductivity of an Individual Carbon Nanotube Using Raman Spectroscopy
    Li Pei
    Feng Daili
    Feng Yanhui
    Liu Xiaofang
    Xiong Mengya
    Zhang Xinxin
    Liu Jinhui
    [J]. JOURNAL OF THERMAL SCIENCE, 2022, 31 (04) : 1016 - 1022
  • [38] Measuring Thermal Conductivity of an Individual Carbon Nanotube Using Raman Spectroscopy
    Pei Li
    Daili Feng
    Yanhui Feng
    Xiaofang Liu
    Mengya Xiong
    Xinxin Zhang
    Jinhui Liu
    [J]. Journal of Thermal Science, 2022, 31 : 1016 - 1022
  • [39] Thermal conductivity enhancement of ZnO nanofluid using a one-step physical method
    Lee, Gyoung-Ja
    Kim, Chang Kyu
    Lee, Min Ku
    Rhee, Chang Kyu
    Kim, Seokwon
    Kim, Chongyoup
    [J]. THERMOCHIMICA ACTA, 2012, 542 : 24 - 27
  • [40] Adjustable thermal conductivity in carbon nanotube nanofluids
    Xie, Huaqing
    Chen, Lifei
    [J]. PHYSICS LETTERS A, 2009, 373 (21) : 1861 - 1864