A note on Gorenstein projective modules

被引:1
|
作者
Wu, Dejun [1 ]
机构
[1] Lanzhou Univ Technol, Dept Appl Math, Lanzhou 730050, Gansu, Peoples R China
基金
中国国家自然科学基金;
关键词
Cover; envelope; Gorenstein projective module; FLAT COVERS; DIMENSIONS;
D O I
10.1080/00927872.2017.1344687
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note, it is proven that if R is a right noetherian ring with id(R)o R < infinity and ExtR(i >= 1) (M, F) = 0 for any left R-module F with finite flat dimension, then M is Gorenstein projective; if R is a left noetherian ring with id(R)R < infinity and M is a Gorenstein projective left R-module, then ExtR(i >= 1), (M, F) = 0 for any left R-module F with finite flat dimension.
引用
收藏
页码:1300 / 1303
页数:4
相关论文
共 50 条
  • [41] Foxby duality and gorenstein injective and projective modules
    Enochs, EE
    Jenda, OMG
    Xu, JZ
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (08) : 3223 - 3234
  • [42] Triangulated Equivalences Involving Gorenstein Projective Modules
    Zheng, Yuefei
    Huang, Zhaoyong
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2017, 60 (04): : 879 - 890
  • [43] (n, m)-STRONGLY GORENSTEIN PROJECTIVE MODULES
    Bennis, Driss
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2009, 6 : 119 - 133
  • [44] Quasi-Gorenstein projective and quasi-Gorenstein injective modules
    Mohammadi Aghjeh Mashhad, Fatemeh
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2022, 33 (13)
  • [45] NOTE ON PROJECTIVE MODULES
    SIMSON, D
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1969, 17 (06): : 355 - &
  • [46] NOTE ON PROJECTIVE MODULES
    SMITH, PF
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1976, 75 : 23 - 31
  • [47] RESOLUTIONS BY GORENSTEIN INJECTIVE AND PROJECTIVE-MODULES AND MODULES OF FINITE INJECTIVE DIMENSION OVER GORENSTEIN RINGS
    ENOCHS, EE
    JENDA, OMG
    COMMUNICATIONS IN ALGEBRA, 1995, 23 (03) : 869 - 877
  • [48] Duality Pairs Induced by Gorenstein Projective Modules with Respect to Semidualizing Modules
    Hu, Jiangsheng
    Geng, Yuxian
    Ding, Nanqing
    ALGEBRAS AND REPRESENTATION THEORY, 2015, 18 (04) : 989 - 1007
  • [49] Duality Pairs Induced by Gorenstein Projective Modules with Respect to Semidualizing Modules
    Jiangsheng Hu
    Yuxian Geng
    Nanqing Ding
    Algebras and Representation Theory, 2015, 18 : 989 - 1007
  • [50] Gorenstein Projective Dimensions of Modules over Minimal Auslander-Gorenstein Algebras
    Li, Shen
    Marczinzik, Rene
    Zhang, Shunhua
    ALGEBRA COLLOQUIUM, 2021, 28 (02) : 337 - 350