On Free Energies of the Ising Model on the Cayley Tree

被引:26
|
作者
Gandolfo, D. [1 ,2 ]
Rakhmatullaev, M. M. [3 ]
Rozikov, U. A. [4 ]
Ruiz, J. [1 ,2 ]
机构
[1] Univ Aix Marseille, Ctr Phys Theor, UMR 6207, F-13288 Marseille, France
[2] Univ Sud Toulon Var, Ctr Phys Theor, UMR 6207, F-13288 Marseille, France
[3] Namangan State Univ, Namangan, Uzbekistan
[4] Inst Math, Tashkent 100125, Uzbekistan
关键词
Cayley tree; Ising model; Boundary condition; Gibbs measure; Free energy; Entropy; GIBBS MEASURES; STATE;
D O I
10.1007/s10955-013-0713-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present, for the Ising model on the Cayley tree, some explicit formulae of the free energies (and entropies) according to boundary conditions (b.c.). They include translation-invariant, periodic, Dobrushin-like b.c., as well as those corresponding to (recently discovered) weakly periodic Gibbs states. The weakly periodic measures are defined through a partition of the Cayley tree that induces a 4-edge-coloring on that tree. We compute the density of each color. We use these densities for computations of free energies corresponding to a weakly periodic b.c.
引用
收藏
页码:1201 / 1217
页数:17
相关论文
共 50 条