Spatio-temporal context based recurrent visual attention model for lymph node detection

被引:2
|
作者
Peng, Haixin [1 ]
Peng, Yinjun [1 ,2 ]
机构
[1] Shandong Univ Sci & Technol, Coll Comp Sci & Engn, Qingdao 266590, Peoples R China
[2] Shandong Univ Sci & Technol, Shandong Prov Key Lab Wisdom Min Informat Technol, Qingdao, Peoples R China
基金
中国国家自然科学基金;
关键词
biomedical image classification; false-positive reduction; mixture density networks; recurrent visual attention; CONVOLUTIONAL NEURAL-NETWORKS; AUTOMATIC DETECTION; SEGMENTATION; CNN;
D O I
10.1002/ima.22430
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
False-positive reduction is one of the most crucial components in an automated lymph nodes (LNs) detection task in volumetric computed tomography (CT) scans, which is a highly sought goal for cancer diagnosis and early treatment. In this article, treating the three-dimensional (3D) LN detection task as object detection on sequence problem, we propose a novel spatio-temporal context-based recurrent visual attention model (STRAM) for the LNs false positive reduction. We firstly extract the deep spatial features maps for two-dimensional LN patches from pre-trained Inception-V3 model. A new Gaussian kernel-based spatial attention method is then presented to extract the most discriminating spatial features for the corresponding center slices. Additionally, to combine the temporal information between 3D CT slices, we devise a novel "Siamese" mixture density networks which can learn to adaptively focus on the most relevant parts of the CT slices. Considering the lesion areas always locate around the centroid of the 3D CT scans, a hard constraint is imposed on the predicted attention locations with batch normalization technique and the Siamese architecture. The proposed model is a fully differentiable unit that can be optimized end-to-end by using stochastic gradient descent. The effectiveness of our method is verified on LN dataset: 388 mediastinal LNs labeled by radiologists in 90 patient CT scans, and 595 abdominal LNs in 86 patient CT scans. Our method demonstrates sensitivities of about 87%/82% at 3 FP/vol. and 93%/89% at 6 FP/vol. for mediastinum and abdomen, respectively, which compares favorably to previous methods.
引用
收藏
页码:1220 / 1242
页数:23
相关论文
共 50 条
  • [21] Detection Algorithm of Chest Bitmap Based on Spatio-temporal Context Information
    Wang H.
    Cheng Y.
    Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2020, 42 (08): : 1959 - 1967
  • [22] Spatio-temporal attention mechanisms based model for collective activity recognition
    Lu, Lihua
    Di, Huijun
    Lu, Yao
    Zhang, Lin
    Wang, Shunzhou
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2019, 74 : 162 - 174
  • [23] Traffic Prediction Model Based on Spatio-temporal Graph Attention Network
    Chen, Jing
    Wang, Linkai
    Wang, Wei
    Song, Ruizhuo
    2022 4TH INTERNATIONAL CONFERENCE ON CONTROL AND ROBOTICS, ICCR, 2022, : 428 - 432
  • [24] Spatio-Temporal Attention Networks for Action Recognition and Detection
    Li, Jun
    Liu, Xianglong
    Zhang, Wenxuan
    Zhang, Mingyuan
    Song, Jingkuan
    Sebe, Nicu
    IEEE TRANSACTIONS ON MULTIMEDIA, 2020, 22 (11) : 2990 - 3001
  • [25] Unified spatio-temporal attention mixformer for visual object tracking
    Park, Minho
    Yoon, Gang-Joon
    Song, Jinjoo
    Yoon, Sang Min
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 134
  • [26] Detection of Spatio-Temporal Recurrent Patterns in Dynamical Systems
    Bonizzi, Pietro
    Peeters, Ralf
    Zeemering, Stef
    van Hunnik, Arne
    Meste, Olivier
    Karel, Joel
    FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2019, 5
  • [27] Research on POI Recommendation Model Based on Spatio-temporal Context Information
    Ye Jihua
    Yang Siyu
    Zuo Jiali
    Wang Mingwen
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2021, 43 (12) : 3546 - 3553
  • [28] Target tracking for mobile robot based on Spatio-Temporal Context model
    Jia, Songmin
    Xuan, Xuan
    Xu, Tao
    Zhang, Peng
    Dong, Zhenyin
    2015 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO), 2015, : 976 - 981
  • [29] Spatio-temporal ontologies and attention
    University of Freiburg, Freiburg, Germany
    Spat. Cogn. Comput., 2007, 1 (13-32):
  • [30] Online Spatio-temporal Structural Context Learning for Visual Tracking
    Wen, Longyin
    Cai, Zhaowei
    Lei, Zhen
    Yi, Dong
    Li, Stan Z.
    COMPUTER VISION - ECCV 2012, PT IV, 2012, 7575 : 716 - 729