Absence of eigenvalues of non-self-adjoint Robin Laplacians on the half-space

被引:8
|
作者
Cossetti, L. [1 ,2 ]
Krejcirik, D. [1 ]
机构
[1] Czech Tech Univ, Fac Nucl Sci & Phys Engn, Dept Math, Trojanova 13, Prague 12000 2, Czech Republic
[2] Karlsruhe Inst Technol, Inst Anal, Dept Math, Englerstr 2, D-76131 Karlsruhe, Germany
关键词
35J05 (primary); 35P15; 47A10; 81Q12 (secondary); SCHRODINGER-OPERATORS; HELMHOLTZ-EQUATION; EXTENSION PROBLEM; SCATTERING; THEOREM; BOUNDS;
D O I
10.1112/plms.12327
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By developing the method of multipliers, we establish sufficient conditions which guarantee the total absence of eigenvalues of the Laplacian in the half-space, subject to variable complex Robin boundary conditions. As a further application of this technique, uniform resolvent estimates are derived under the same assumptions on the potential. Some of the results are new even in the self-adjoint setting, where we obtain quantum-mechanically natural conditions.
引用
收藏
页码:584 / 616
页数:33
相关论文
共 50 条
  • [21] An upper bound for the number of eigenvalues of a non-self-adjoint Schröbinger operator
    S. A. Stepin
    [J]. Doklady Mathematics, 2014, 89 : 202 - 205
  • [22] Localization of eigenvalues for non-self-adjoint Dirac and Klein-Gordon operators
    D'Ancona, P.
    Fanelli, L.
    Krejcirik, D.
    Schiavone, N. M.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2022, 214
  • [23] Eigenvalues of one-dimensional non-self-adjoint Dirac operators and applications
    Cuenin, Jean-Claude
    Siegl, Petr
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2018, 108 (07) : 1757 - 1778
  • [24] Location of eigenvalues of three-dimensional non-self-adjoint Dirac operators
    Luca Fanelli
    David Krejčiřík
    [J]. Letters in Mathematical Physics, 2019, 109 : 1473 - 1485
  • [25] Location of eigenvalues of three-dimensional non-self-adjoint Dirac operators
    Fanelli, Luca
    Krejcirik, David
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2019, 109 (07) : 1473 - 1485
  • [26] NON-SELF-ADJOINT GRAPHS
    Hussein, Amru
    Krejcirik, David
    Siegl, Petr
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 367 (04) : 2921 - 2957
  • [27] Perturbation theory of nonlinear, non-self-adjoint eigenvalue problems: Semisimple eigenvalues
    Orchini, Alessandro
    Mensah, Georg A.
    Moeck, Jonas P.
    [J]. JOURNAL OF SOUND AND VIBRATION, 2021, 507
  • [28] ON THE ESTIMATIONS OF THE SMALL EIGENVALUES OF NON-SELF-ADJOINT STURM-LIOUVILLE OPERATORS
    Nur, C.
    Veliev, O. A.
    [J]. TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2019, 9 (04): : 882 - 893
  • [29] Eigenvalues of one-dimensional non-self-adjoint Dirac operators and applications
    Jean-Claude Cuenin
    Petr Siegl
    [J]. Letters in Mathematical Physics, 2018, 108 : 1757 - 1778
  • [30] Lagrangians for self-adjoint and non-self-adjoint equations
    He, Ji-Huan
    [J]. APPLIED MATHEMATICS LETTERS, 2013, 26 (03) : 373 - 375