The tensor rank of tensor product of two three-qubit W states is eight

被引:30
|
作者
Chen, Lin [1 ,2 ]
Friedland, Shmuel [3 ]
机构
[1] Beihang Univ, Sch Math & Syst Sci, Beijing 100191, Peoples R China
[2] Beihang Univ, Int Res Inst Multidisciplinary Sci, Beijing 100191, Peoples R China
[3] Univ Illinois, Dept Math Stat & Comp Sci, Chicago, IL 60607 USA
基金
北京市自然科学基金;
关键词
Tensor rank; Qubit; W state; Kronecker product; Tensor product;
D O I
10.1016/j.laa.2017.12.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the tensor rank of tensor product of two three-qubit W states is not less than eight. Combining this result with the recent result of M. Christandl, A.K. Jensen, and J. Zuiddam that the tensor rank of tensor product of two three-qubit W states is at most eight, we deduce that the tensor rank of tensor product of two three-qubit W states is eight. We also construct the upper bound of the tensor rank of tensor product of many three-qubit W states. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条
  • [31] Deterministic remote preparation of arbitrary two- and three-qubit states
    Zhan, You-Bang
    EPL, 2012, 98 (04)
  • [32] TELEPORTING AND SPLITTING ARBITRARY SINGLE-QUBIT INFORMATION USING A CLASS OF THREE-QUBIT W STATES
    Yang, Jie
    Liu, Yi-Min
    Zuo, Xue-Qin
    Zhang, Zhan-Jun
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2009, 7 (07) : 1349 - 1356
  • [33] On local invariants of pure three-qubit states
    Sudbery, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (03): : 643 - 652
  • [34] Quantum circuit for three-qubit random states
    Giraud, Olivier
    Znidaric, Marko
    Georgeot, Bertrand
    PHYSICAL REVIEW A, 2009, 80 (04):
  • [35] Lorentz invariants of pure three-qubit states
    Devi, A. R. Usha
    Sudha, H. Akshata
    Shenoy, H. Akshata
    Karthik, H. S.
    Karthik, B. N.
    QUANTUM INFORMATION PROCESSING, 2024, 23 (07)
  • [36] Invariants for a Class of Nongeneric Three-Qubit States
    SUN Bao-Zhi FEI Shao-Ming1 Department of Mathematics
    CommunicationsinTheoreticalPhysics, 2006, 45 (06) : 1007 - 1010
  • [37] Entanglement dynamics in three-qubit X states
    Weinstein, Yaakov S.
    PHYSICAL REVIEW A, 2010, 82 (03):
  • [38] Entanglement and kinds of pure three-qubit states
    Department of Applied Mathematics and Physics, Xi'an Institute of Posts and Telecommunications, Xi'an 710061, China
    不详
    Hsi An Chiao Tung Ta Hsueh, 2006, 2 (243-245):
  • [39] Remote preparation of a class of three-qubit states
    Wang, Dong
    Liu, Yi-min
    Zhang, Zhan-jun
    OPTICS COMMUNICATIONS, 2008, 281 (04) : 871 - 875
  • [40] Control and measurement of three-qubit entangled states
    Roos, CF
    Riebe, M
    Häffner, H
    Hänsel, W
    Benhelm, J
    Lancaster, GPT
    Becher, C
    Schmidt-Kaler, F
    Blatt, R
    SCIENCE, 2004, 304 (5676) : 1478 - 1480