Testing Lorentz symmetry with planetary orbital dynamics

被引:53
|
作者
Hees, A. [1 ]
Bailey, Q. G. [2 ]
Le Poncin-Lafitte, C. [3 ]
Bourgoin, A. [3 ]
Rivoldini, A. [4 ]
Lamine, B. [5 ]
Meynadier, F. [3 ]
Guerlin, C. [3 ,6 ]
Wolf, P. [3 ]
机构
[1] Rhodes Univ, Dept Math, ZA-6140 Grahamstown, South Africa
[2] Embry Riddle Aeronaut Univ, Dept Phys, Prescott, AZ 86301 USA
[3] Univ Paris 06, Sorbonne Univ, PSL Res Univ, SYRTE,Observ Paris,CNRS,LNE, F-75014 Paris, France
[4] Royal Observ Belgium, B-1180 Brussels, Belgium
[5] Univ Toulouse, CNRS, UPS OMP, IRAP, F-31028 Toulouse, France
[6] UPMC, Univ Paris 04, ENS PSL Res Univ, Lab Kastler Brossel,CNRS,Coll France, F-75005 Paris, France
来源
PHYSICAL REVIEW D | 2015年 / 92卷 / 06期
关键词
GENERAL-RELATIVITY; DARK-MATTER; EPHEMERIDES; CONSTRAINTS; EPM;
D O I
10.1103/PhysRevD.92.064049
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Planetary ephemerides are a very powerful tool to constrain deviations from the theory of general relativity (GR) using orbital dynamics. The effective field theory framework called the Standard-Model Extension (SME) has been developed in order to systematically parametrize hypothetical violations of Lorentz symmetry (in the Standard Model and in the gravitational sector). In this communication, we use the latest determinations of the supplementary advances of the perihelia and of the nodes obtained by planetary ephemerides analysis to constrain SME coefficients from the pure gravity sector and also from gravity-matter couplings. Our results do not show any deviation from GR and they improve current constraints. Moreover, combinations with existing constraints from Lunar Laser Ranging and from atom interferometry gravimetry allow us to disentangle contributions from the pure gravity sector from the gravity-matter couplings.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] The HD 181433 Planetary System: Dynamics and a New Orbital Solution
    Horner, Jonathan
    Wittenmyer, Robert A.
    Wright, Duncan J.
    Hinse, Tobias C.
    Marshall, Jonathan P.
    Kane, Stephen R.
    Clark, Jake T.
    Mengel, Matthew
    Agnew, Matthew T.
    Johns, Daniel
    ASTRONOMICAL JOURNAL, 2019, 158 (03):
  • [22] Lorentz symmetry is relevant
    Knorr, Benjamin
    PHYSICS LETTERS B, 2019, 792 : 142 - 148
  • [23] Breaking Lorentz symmetry
    Bluhm, R
    PHYSICS WORLD, 2004, 17 (03) : 41 - 46
  • [24] Lorentz symmetry violation
    Belich, H.
    Costa-Soares, T.
    Santos, M. A.
    Orlando, M. T. D.
    REVISTA BRASILEIRA DE ENSINO DE FISICA, 2007, 29 (01): : 57 - 64
  • [25] CPT and Lorentz Symmetry
    Altschul, Brett
    INTERSECTIONS OF PARTICLE AND NUCLEAR PHYSICS, 2009, 1182 : 313 - 316
  • [26] Geometrodynamics and Lorentz symmetry
    Wise, D. K.
    3QUANTUM: ALGEBRA GEOMETRY INFORMATION (QQQ CONFERENCE 2012), 2014, 532
  • [27] Testing Lorentz symmetry with space-based gravitational-wave detectors
    Qin, Cheng-Gang
    Ke, Jun
    Li, Qin
    Chen, Ya-Fen
    Luo, Jie
    Tan, Yu-Jie
    Shao, Cheng-Gang
    CLASSICAL AND QUANTUM GRAVITY, 2023, 40 (20)
  • [28] Testing Lorentz symmetry in deep inelastic scattering with an electron-ion collider
    Sherrill, Nathan
    INTERNATIONAL WORKSHOP ON PHYSICS WITH POSITRONS AT JEFFERSON LAB, 2018, 1970
  • [29] Testing CPT and Lorentz symmetry with hydrogen masers -: art. no. 063807
    Humphrey, MA
    Phillips, DF
    Mattison, EM
    Vessot, RFC
    Stoner, RE
    Walsworth, RL
    PHYSICAL REVIEW A, 2003, 68 (06):
  • [30] Dynamics of comets in the outer planetary region .2. Enhanced planetary masses and orbital evolutionary paths
    Valsecchi, GB
    Manara, A
    ASTRONOMY & ASTROPHYSICS, 1997, 323 (03) : 986 - 998