Recurrent noise-induced phase singularities in drifting patterns

被引:2
|
作者
Clerc, M. G. [1 ]
Coulibaly, S. [2 ]
del Campo, F. [1 ]
Garcia-Nustes, M. A. [3 ]
Louvergneaux, E. [2 ]
Wilson, M. [2 ]
机构
[1] Univ Chile, FCFM, Dept Fis, Santiago, Chile
[2] Univ Lille 1, CNRS UMR 8523, Lab Phys Lasers Atomes & Mol, F-59655 Villeneuve Dascq, France
[3] Pontificia Univ Catolica Valparaiso, Inst Fis, Valparaiso, Chile
来源
PHYSICAL REVIEW E | 2015年 / 92卷 / 05期
关键词
HOLE SOLUTIONS; INSTABILITIES; INTERMITTENCY; DYNAMICS;
D O I
10.1103/PhysRevE.92.050902
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We show that the key ingredients for creating recurrent traveling spatial phase defects in drifting patterns are a noise-sustained structure regime together with the vicinity of a phase transition, that is, a spatial region where the control parameter lies close to the threshold for pattern formation. They both generate specific favorable initial conditions for local spatial gradients, phase, and/or amplitude. Predictions from the stochastic convective Ginzburg-Landau equation with real coefficients agree quite well with experiments carried out on a Kerr medium submitted to shifted optical feedback that evidence noise-induced traveling phase slips and vortex phase-singularities.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Noise-Induced Phase Transition in Traffic Flow
    LI Ke-Ping GAO Zi-You School of Traffic and Transportation
    Communications in Theoretical Physics, 2004, 42 (09) : 369 - 372
  • [22] Analytic description of noise-induced phase synchronization
    Freund, JA
    Neiman, AB
    Schimansky-Geier, L
    EUROPHYSICS LETTERS, 2000, 50 (01): : 8 - 14
  • [23] Noise-Induced nonequilibrium phase transition - Comment
    Ramaswamy, S
    Pandit, R
    Lahiri, R
    PHYSICAL REVIEW LETTERS, 1995, 75 (26) : 4786 - 4786
  • [24] Noise-induced phase transitions in nonlinear oscillators
    Landa, PS
    Zaikin, AA
    COMPUTING ANTICIPATORY SYSTEMS, 1999, 465 : 419 - 433
  • [26] Noise-induced intermittent cellular patterns on circular domains
    Blomgren, Peter
    Gasner, Scott
    Palacios, Antonio
    PHYSICAL REVIEW E, 2006, 74 (04):
  • [27] Effective phase description of noise-perturbed and noise-induced oscillations
    J.T.C. Schwabedal
    A. Pikovsky
    The European Physical Journal Special Topics, 2010, 187 : 63 - 76
  • [28] Influence of additive noise on noise-induced phase transitions in nonlinear chains
    Landa, PS
    Zaikin, AA
    Schimansky-Geier, L
    CHAOS SOLITONS & FRACTALS, 1998, 9 (08) : 1367 - 1372
  • [29] Effective phase description of noise-perturbed and noise-induced oscillations
    Schwabedal, J. T. C.
    Pikovsky, A.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2010, 187 (01): : 63 - 76
  • [30] NOISE-INDUCED CHAOS AND PHASE-SPACE FLUX
    FREY, M
    SIMIU, E
    PHYSICA D, 1993, 63 (3-4): : 321 - 340