Recurrent noise-induced phase singularities in drifting patterns

被引:2
|
作者
Clerc, M. G. [1 ]
Coulibaly, S. [2 ]
del Campo, F. [1 ]
Garcia-Nustes, M. A. [3 ]
Louvergneaux, E. [2 ]
Wilson, M. [2 ]
机构
[1] Univ Chile, FCFM, Dept Fis, Santiago, Chile
[2] Univ Lille 1, CNRS UMR 8523, Lab Phys Lasers Atomes & Mol, F-59655 Villeneuve Dascq, France
[3] Pontificia Univ Catolica Valparaiso, Inst Fis, Valparaiso, Chile
来源
PHYSICAL REVIEW E | 2015年 / 92卷 / 05期
关键词
HOLE SOLUTIONS; INSTABILITIES; INTERMITTENCY; DYNAMICS;
D O I
10.1103/PhysRevE.92.050902
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We show that the key ingredients for creating recurrent traveling spatial phase defects in drifting patterns are a noise-sustained structure regime together with the vicinity of a phase transition, that is, a spatial region where the control parameter lies close to the threshold for pattern formation. They both generate specific favorable initial conditions for local spatial gradients, phase, and/or amplitude. Predictions from the stochastic convective Ginzburg-Landau equation with real coefficients agree quite well with experiments carried out on a Kerr medium submitted to shifted optical feedback that evidence noise-induced traveling phase slips and vortex phase-singularities.
引用
下载
收藏
页数:6
相关论文
共 50 条
  • [1] Noise-induced spatial patterns
    Parrondo, JMR
    vandenBroeck, C
    Buceta, J
    delaRubia, FJ
    PHYSICA A, 1996, 224 (1-2): : 153 - 161
  • [2] Noise-induced spatial patterns
    Parrondo, J.M.R.
    Van den Broeck, C.
    Buceta, J.
    de la Rubia, F.J.
    Physica A: Statistical and Theoretical Physics, 1996, 224 (1-2):
  • [3] Noise-induced transitions vs. noise-induced phase transitions
    Toral, Raul
    NON-EQUILIBRIUM STATISTICAL PHYSICS TODAY, 2011, 1332 : 145 - 154
  • [4] Noise-induced shift of singularities in the pattern of optimal paths
    Bandrivskyy, A
    Beri, S
    Luchinsky, DG
    PHYSICS LETTERS A, 2003, 314 (5-6) : 386 - 391
  • [5] Noise-induced walking patterns on ratchets
    Mateos, JL
    Neiman, A
    Moss, F
    UNSOLVED PROBLEMS OF NOISE AND FLUCTUATIONS, 2003, 665 : 569 - 577
  • [6] Noise-induced synchronization for phase turbulence
    Sakaguchi, H
    PHYSICS LETTERS A, 2003, 318 (06) : 553 - 557
  • [7] Design and control of noise-induced synchronization patterns
    Kurebayashi, W.
    Ishii, T.
    Hasegawa, M.
    Nakao, H.
    EPL, 2014, 107 (01)
  • [8] Control of noise-induced spatiotemporal patterns in superlattices
    Hizanidis, Johanne
    Schoell, Eckehard
    PHYSICA STATUS SOLIDI C - CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 5, NO 1, 2008, 5 (01): : 207 - 210
  • [9] Additive noise and noise-induced nonequilibrium phase transitions
    Zaikin, A
    Kurths, J
    UNSOLVED PROBLEMS OF NOISE AND FLUCTUATIONS, 2000, 511 : 303 - 313
  • [10] Noise-induced phase synchronization enhanced by dichotomic noise
    Rozenfeld, R
    Freund, JA
    Neiman, A
    Schimansky-Geier, L
    PHYSICAL REVIEW E, 2001, 64 (05)