COMPARISON OF LINEAR AND NONLINEAR MODELS TO ESTIMATE THE RISK OF SOIL CONTAMINATION

被引:0
|
作者
Toriz-Robles, Nancy [1 ]
Ramirez-Guzman, Martha E. [1 ]
Fernandez-Ordonez, Yolanda M. [1 ]
Soria-Ruiz, Jestis [2 ]
Moncada, Maria C. Ybarra [3 ]
机构
[1] Colegio Postgrad, Campus Montecillo,Carretera Mexico,Km 36-5, Montecillo, Estado De Mexic, Mexico
[2] Inst Nacl Invest Forestales & Agro Pecuarias, Campo Expt Valle Toluca, Zinacantepec, Estado De Mexic, Mexico
[3] Univ Autonoma Chapingo, Carretera Mexico,Km 38-5, Zinacantepec, Estado De Mexic, Mexico
关键词
Heavy metals; autocorrelation; non-normal distribution; heteroscedasticity; generalized mixed models; additive mixed models; INFERENCE;
D O I
暂无
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
The study of pollution in geographical areas includes spatial dependence, non-normal distribution, and heteroscedasticity. However, the modelling of edaphological data has not taken these features into consideration. Therefore, this study included the analysis and comparison of the behavior of the estimators of generalized linear regression (GLM), generalized linear mixed (GLMM), generalized additive (GAM), and generalized additive mixed (GAMM) models, through the simulation of a response variable generated with different statistical distributions, with five weighing matrixes (W, B, C, U, and S) and several autocorrelation levels. The results showed a strong U-adjacency matrix for all spatial autocorrelation levels. As was expected, GAMs and GAMMs were higher than GLMs and GLMMs, as a consequence of their flexibility which is represented by smoothing splines and the incorporation of mixed effects. The concentration of heavy metals and the risk probability of surpassing permissible limits in the Mezquital Valley, Hidalgo, were subject to prediction mapping.
引用
收藏
页码:269 / 283
页数:15
相关论文
共 50 条