Log-Burr XII Gamma-Weibull Regression Model with Random Effects and Censored Data

被引:6
|
作者
Hashimoto, Elizabeth M. [1 ]
Silva, Giovana O. [2 ]
Ortega, Edwin M. M. [3 ]
Cordeiro, Gauss M. [4 ]
机构
[1] UTFPR, Dept Acad Matemat, Curitiba, Parana, Brazil
[2] Univ Fed Bahia, Dept Estat, Salvador, BA, Brazil
[3] Univ Sao Paulo, Dept Ciencias Exatas, ESALQ, Av Padua Dias 11,Caixa Postal 9, BR-13418900 Piracicaba, SP, Brazil
[4] Univ Fed Pernambuco, Dept Estat, Recife, PE, Brazil
基金
瑞典研究理事会; 巴西圣保罗研究基金会;
关键词
Censored data; Log-gamma-Weibull distribution; Random effect; Regression model; FAILURE TIME MODELS; DISTRIBUTIONS;
D O I
10.1007/s42519-018-0026-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
It may happen in some applications that the assumption of independence of survival times does not hold. Thus, we propose a new log-Burr XII regression model with log-gamma-Weibull distributions for the random effects. The maximum likelihood method is used to estimate the model parameters based on the Gauss-Hermite numerical integration technique. For different parameter settings, sample sizes, censoring percentages and correlated data, various simulations are performed. Some global-influence measurements are also investigated. In order to assess the robustness of the maximum likelihood estimators, we evaluate local influence on the estimates of the parameters under different perturbation schemes. We illustrate the importance of the new model by means of a real data set in analysis of experiments.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Bayesian Inference for the Discrete Weibull Regression Model with Type-I Right Censored Data
    Chaiprasithikul, Dusit
    Duangsaphon, Monthira
    THAILAND STATISTICIAN, 2022, 20 (04): : 791 - 811
  • [32] E-Bayesian Prediction for the Burr XII Model Based on Type-II Censored Data with Two Samples
    Okasha, Hassan M.
    Wang, Chuanmei
    Wang, Jianhua
    ADVANCES IN MATHEMATICAL PHYSICS, 2020, 2020
  • [33] Asymptotic normality of the regression mode in the nonparametric random design model for censored data
    Bouzebda, Salim
    Khardani, Salah
    Slaoui, Yousri
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (19) : 7069 - 7093
  • [34] Technology diffusion in hospitals: a log odds random effects regression model
    Blank, Jos L. T.
    Valdmanis, Vivian G.
    INTERNATIONAL JOURNAL OF HEALTH PLANNING AND MANAGEMENT, 2015, 30 (03): : 246 - 259
  • [35] Assessing the lifetime performance index of products from progressively type II right censored data using Burr XII model
    Lee, Wen-Chuan
    Wu, Jong-Wuu
    Hong, Ching-Wen
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2009, 79 (07) : 2167 - 2179
  • [36] Restricted maximum likelihood estimation of a censored random effects panel regression model
    Lee, Minah
    Lee, Seung-Chun
    COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2019, 26 (04) : 371 - 383
  • [37] Modelling Asymmetric Data by Using the Log-Gamma-Normal Regression Model
    Tovar-Falon, Roger
    Martinez-Florez, Guillermo
    Bolfarine, Heleno
    MATHEMATICS, 2022, 10 (07)
  • [38] A new regression model for the analysis of bimodal censored data: A comparison with random survival forest
    Rodrigues, Gabriela M.
    Ortega, Edwin M. M.
    Vila, Roberto
    Moral, Rafael De Andrade
    BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2024, 38 (03) : 347 - 369
  • [39] Inference of P(X > Y) for the Burr-XII model under generalized progressive hybrid censored data with binomial removals
    Cetinkaya, Cagatay
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2023, 35 (07):
  • [40] E-Bayesian estimation of Burr Type XII model based on adaptive Type-II progressive hybrid censored data
    Okasha, Hassan
    Nassar, Mazen
    Dobbah, Saeed A.
    AIMS MATHEMATICS, 2021, 6 (04): : 4173 - 4196