Parsimonious use of indicators for evaluating sustainability systems with multivariate statistical analyses

被引:32
|
作者
Mukherjee, Rajib [1 ]
Sengupta, Debalina [1 ]
Sikdar, Subhas K. [1 ]
机构
[1] US EPA, Natl Risk Management Res Lab, Cincinnati, OH 45268 USA
基金
美国国家环境保护局;
关键词
Principal component analysis (PCA); Partial least square-variable importance in projection (PLS-VIP); Sustainability; Indicators; Multivariate statistical analysis; AGGREGATING MULTIPLE INDICATORS;
D O I
10.1007/s10098-013-0614-6
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Indicators are commonly used for evaluating relative sustainability for competing products and processes. When a set of indicators is chosen for a particular system of study, it is important to ensure that they vary independently of each other. Often, the number of indicators characterizing a chosen system may be large. It is essential to select the most important indicators from a large set so that a dependable bias-free analysis can be done using the reduced set of indicators. In this paper, we propose the use of principal component analysis (PCA) along with the partial least square-variable importance in projection (PLS-VIP) method to ensure that the explicit or tacit assumption of the independence of the chosen indicators is valid. We have used two case studies to demonstrate successful use of these two methods for parsimonious use of indicators for sustainability analysis of systems.
引用
收藏
页码:699 / 706
页数:8
相关论文
共 50 条
  • [21] The sustainability indicators of power production systems
    Onat, Nevzat
    Bayar, Haydar
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2010, 14 (09): : 3108 - 3115
  • [22] MULTIVARIATE STATISTICAL-ANALYSES - GERMAN - MOOSBRUGGER,H
    SEIDEL, G
    PSYCHOLOGISCHE RUNDSCHAU, 1980, 31 (02) : 113 - 113
  • [23] Multivariate statistical analyses applied to seismic facies recognition
    Dumay, Jean
    Fournier, Frederique
    Geophysics, 1988, 53 (09): : 1151 - 1159
  • [24] Multivariate analyses on psychotropic drug use
    Luiz, Marco
    Santos, Freire
    Erica, Maria
    SALUD ARTE Y CUIDADO, 2019, 12 (01): : 36 - 46
  • [25] MULTIVARIATE STATISTICAL ANALYSES ON ARSENIC OCCURRENCE IN RYBNIK RESERVOIR
    Widziewicz, Kamila
    Loska, Krzysztof
    ARCHIVES OF ENVIRONMENTAL PROTECTION, 2012, 38 (02) : 11 - 23
  • [26] USE OF DISCRIMINANT AND MULTIVARIATE VARIANCE ANALYSES
    DUDECK, J
    LANGE, HJ
    VICTOR, N
    ZEITSCHRIFT FUR KLINISCHE CHEMIE UND KLINISCHE BIOCHEMIE, 1969, 7 (02): : 216 - &
  • [27] INDICATORS AND INDICATORS SYSTEMS AS TOOLS FOR EVALUATING THE PLANNING PROCESS
    CAVALLO, F
    DISTANISLAO, F
    ZANONI, M
    SYSTEM SCIENCE IN HEALTH CARE, 1: INFORMATION IN HEALTH CARE SYSTEMS, 1988, 138 : 105 - 108
  • [28] Multivariate statistical methods for evaluating biodegradation of mineral oil
    Christensen, JH
    Hansen, AB
    Karlson, U
    Mortensen, J
    Andersen, O
    JOURNAL OF CHROMATOGRAPHY A, 2005, 1090 (1-2) : 133 - 145
  • [29] A systems approach to evaluating sustainability of biofuel systems
    Mangoyana, Robert B.
    Smith, Timothy F.
    Simpson, Rodney
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2013, 25 : 371 - 380
  • [30] Evaluating trace elements as paleoclimate indicators: Multivariate statistical analysis of late Mississippian Pennington Formation paleosols, Kentucky, USA
    Kahmann, Julia A.
    Seaman, John, III
    Driese, Steven G.
    JOURNAL OF GEOLOGY, 2008, 116 (03): : 254 - 268