Lambda-doublet specificity in the low-temperature capture of NO(X 2Π1/2) in low rotational states by C+ ions

被引:6
|
作者
Auzinsh, M. [1 ]
Dashevskaya, E. I. [2 ,3 ]
Litvin, I. [2 ,3 ]
Nikitin, E. E. [2 ,3 ]
Troe, J. [3 ,4 ]
机构
[1] Latvian State Univ, Dept Phys, LV-1586 Riga, Latvia
[2] Technion Israel Inst Technol, Schulich Fac Chem, IL-32000 Haifa, Israel
[3] Max Planck Inst Biophys Chem, D-37077 Gottingen, Germany
[4] Univ Gottingen, Inst Phys Chem, D-37077 Gottingen, Germany
来源
JOURNAL OF CHEMICAL PHYSICS | 2009年 / 130卷 / 01期
关键词
carbon; electron capture; hyperfine structure; nitrogen compounds; positive ions; reaction rate constants; rotational states; Stark effect; DIPOLAR MOLECULES; CHANNEL TREATMENT; REACTION-RATES; NITRIC-OXIDE; LOW-ENERGY; SPECTRUM; COLLISIONS; BAND;
D O I
10.1063/1.3043365
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Following our general approach to Lambda-doubling specificity in the capture of dipolar molecules by ions [M. Auzinsh , J. Chem. Phys. 128, 184304 (2008)], we calculate the rate coefficients for the title process in the temperature range 10(-4)< T < 10(2) K. Three regimes considered are as follows: (i) nonadiabatic capture in the regime of high-field Stark effect with respect to the Lambda-doubling components, (10(-1)< T < 10(2) K), (ii) adiabatic capture in the regime of intermediate Stark effect (10(-3)< T < 10(-1) K), and (iii) adiabatic capture in the limit of very low temperatures (T < 10(-3) K) in the regime of quadratic Stark effect with respect to the Lambda-doubling and hyperfine components. The results predict a high specificity of the capture rates with respect to the Lambda-doublet states even under conditions when the collision energy of the partners strongly exceeds the Lambda-doubling splitting.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Low-temperature metamagnetic states in single crystal TbNi2B2C studied by torque magnetometry
    Rathnayaka, K. D. D.
    Naugle, D. G.
    Belevtsev, B. I.
    Canfield, P. C.
    Budko, S. L.
    JOURNAL OF APPLIED PHYSICS, 2009, 105 (07)
  • [32] AB-INITIO POTENTIAL-ENERGY SURFACES AND QUANTUM SCATTERING STUDIES OF NO(X(2)PI) WITH HE - LAMBDA-DOUBLET RESOLVED ROTATIONAL AND ELECTRONIC FINE-STRUCTURE TRANSITIONS
    YANG, M
    ALEXANDER, MH
    JOURNAL OF CHEMICAL PHYSICS, 1995, 103 (16): : 6973 - 6983
  • [33] LOW-TEMPERATURE PROPERTIES OF U1-XTHXRE2
    OTT, HR
    HULLIGER, F
    DELSING, P
    RUDIGIER, H
    FISK, Z
    JOURNAL OF THE LESS-COMMON METALS, 1986, 124 : 235 - 243
  • [34] KRION 1-2 INSTRUMENT FOR LOW-TEMPERATURE MEASUREMENT
    DANILEVICH, RI
    ZARUBIN, LI
    NEMISH, IY
    INSTRUMENTS AND EXPERIMENTAL TECHNIQUES, 1976, 19 (06) : 1855 - 1855
  • [35] Theoretical study of the low-temperature c(2x2) structure of Li adsorbed Cu (001) surface
    Oguchi, T
    Hamada, N
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1997, 66 (09) : 2751 - 2757
  • [36] OBSERVATION OF AT1/2 DEPENDENCE IN THE LOW-TEMPERATURE ELECTRICAL-CONDUCTIVITY OF (SN)X
    BRIMLOW, GM
    PRIESTLEY, MG
    SOLID STATE COMMUNICATIONS, 1983, 45 (12) : 1063 - 1067
  • [37] LOW-TEMPERATURE ADSORPTION AND DECOMPOSITION OF BORAZINE ON THE SI(100)-(2X1) SURFACE
    CHIANG, CM
    GATES, SM
    BEACH, DB
    SURFACE SCIENCE, 1992, 261 (1-3) : 88 - 98
  • [38] LOW-TEMPERATURE GROWTH-MECHANISM OF COBALT ON PT(110)(1 X-2)
    FUSY, J
    ALNOT, M
    ABOUELAZIZ, H
    EHRHARDT, JJ
    SURFACE SCIENCE, 1991, 251 : 573 - 578
  • [39] Origin of the apparent (2x1) topography of the Si(100)-c(4x2) surface observed in low-temperature STM images
    Manzano, C.
    Soe, W. -H.
    Kawai, H.
    Saeys, M.
    Joachim, C.
    PHYSICAL REVIEW B, 2011, 83 (20):
  • [40] Solar induced low-temperature phase separation in thermomorphic solvents for CO 2 capture
    Gao, Jubao
    Yuan, Junjie
    Chen, Chengyi
    Wu, Songyue
    Long, Qiujing
    Deng, Gaofeng
    Wang, Zhichao
    SEPARATION AND PURIFICATION TECHNOLOGY, 2024, 348