Hybrid entanglement purification for quantum repeaters

被引:120
|
作者
Sheng, Yu-Bo [1 ,2 ]
Zhou, Lan [2 ,3 ]
Long, Gui-Lu [4 ,5 ,6 ]
机构
[1] Nanjing Univ Posts & Telecommun, Inst Signal Proc Transmiss, Nanjing 210003, Jiangsu, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Minist Educ, Key Lab Broadband Wireless Commun & Sensor Networ, Nanjing 210003, Jiangsu, Peoples R China
[3] Nanjing Univ Posts & Telecommun, Coll Math & Phys, Nanjing 210003, Jiangsu, Peoples R China
[4] Tsinghua Natl Lab Informat Sci & Technol, Beijing 100084, Peoples R China
[5] Tsinghua Univ, State Key Lab Low Dimens Quantum Phys, Beijing 100084, Peoples R China
[6] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China
来源
PHYSICAL REVIEW A | 2013年 / 88卷 / 02期
基金
中国国家自然科学基金;
关键词
ATOMIC ENSEMBLES; CRYPTOGRAPHY; COMMUNICATION; STATE;
D O I
10.1103/PhysRevA.88.022302
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present an entanglement purification protocol (EPP) to reconstruct some maximally hybrid entangled states (HESs) from nonmaximally mixed HESs. We use simple linear optical elements such as a polarization beam splitter (PBS) and beam splitter (BS) to achieve this task. Meanwhile, it is shown that the parity-check gates acted by PBS and BS are enough to complete the task, and the controlled-NOT (CNOT) gates or similar logic operations are not needed. Unlike the current EPPs, this protocol can purify not only the conventional bit-flip error and phase-flip error but also the dissipation error coming from the photon loss of the coherent state. It can also be extended to achieve the purification for multiphoton and multicoherent state HES. This protocol may be useful in current hybrid quantum repeaters.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Demonstration of a stable atom-photon entanglement source for quantum repeaters
    Chen, Shuai
    Chen, Yu-Ao
    Zhao, Bo
    Yuan, Zhen-Sheng
    Schmiedmayer, Joerg
    Pan, Jian-Wei
    PHYSICAL REVIEW LETTERS, 2007, 99 (18)
  • [22] Extracting quantum entanglement - (General entanglement purification protocols)
    Ambainis, A
    Smith, A
    Yang, K
    17TH ANNUAL IEEE CONFERENCE ON COMPUTATIONAL COMPLEXITY, PROCEEDINGS, 2002, : 103 - 112
  • [23] Entanglement over global distances via quantum repeaters with satellite links
    Boone, K.
    Bourgoin, J. -P.
    Meyer-Scott, E.
    Heshami, K.
    Jennewein, T.
    Simon, C.
    PHYSICAL REVIEW A, 2015, 91 (05)
  • [24] An efficient approach for quantum entanglement purification
    Swathi, Mummadi
    Rudra, Bhawana
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2022, 20 (04)
  • [25] Purification for hybrid logical qubit entanglement
    Luo, Cheng-Chen
    Zhou, Lan
    Zhong, Wei
    Sheng, Yu-Bo
    QUANTUM INFORMATION PROCESSING, 2022, 21 (08)
  • [26] Entanglement purification of unknown quantum states
    Brun, TA
    Caves, CM
    Schack, R
    PHYSICAL REVIEW A, 2001, 63 (04) : 1 - 10
  • [27] Entanglement purification and quantum error correction
    Duer, W.
    Briegel, H. J.
    REPORTS ON PROGRESS IN PHYSICS, 2007, 70 (08) : 1381 - 1424
  • [28] Purification for hybrid logical qubit entanglement
    Cheng-Chen Luo
    Lan Zhou
    Wei Zhong
    Yu-Bo Sheng
    Quantum Information Processing, 21
  • [29] Coupling of a quantum memory and telecommunication wavelength photons for high-rate entanglement distribution in quantum repeaters
    Mannami, Kyoko
    Kondo, Takeshi
    Tsuno, Tomoki
    Miyashita, Takuto
    Yoshida, Daisuke
    Ito, Ko
    Niizeki, Kazuya
    Nakamura, Ippei
    Hong, Feng-Lei
    Horikiri, Tomoyuki
    OPTICS EXPRESS, 2021, 29 (25): : 41522 - 41533
  • [30] Multipartite entanglement purification with quantum nondemolition detectors
    Sheng, Y. B.
    Deng, F. G.
    Zhao, B. K.
    Wang, T. J.
    Zhou, H. Y.
    EUROPEAN PHYSICAL JOURNAL D, 2009, 55 (01): : 235 - 242