Using machine learning to identify gene interaction networks associated with breast cancer

被引:5
|
作者
Liu, Liyuan [1 ,2 ]
Zhai, Wenli [3 ]
Wang, Fei [1 ,4 ]
Yu, Lixiang [1 ,4 ]
Zhou, Fei [1 ,4 ]
Xiang, Yujuan [1 ,4 ]
Huang, Shuya [1 ,4 ]
Zheng, Chao [1 ,4 ]
Yuan, Zhongshang [5 ]
He, Yong [3 ]
Yu, Zhigang [1 ,4 ]
Ji, Jiadong [3 ]
机构
[1] Shandong Univ, Hosp 2, Cheeloo Coll Med, Dept Breast Surg, Jinan 250033, Peoples R China
[2] Shandong Univ, Sch Math, Jinan 250100, Peoples R China
[3] Shandong Univ, Inst Financial Studies, Jinan 250100, Peoples R China
[4] Shandong Univ, Inst Translat Med Breast Dis Prevent & Treatment, Jinan 250100, Peoples R China
[5] Shandong Univ, Cheeloo Coll Med, Sch Publ Hlth, Dept Biostat, Jinan 250012, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Breast cancer; Gene interaction network; Single nucleotide polymorphism; Differential network analysis; RISK-FACTORS; LEPTIN RECEPTOR; POLYMORPHISMS; RESISTIN; OBESITY; WOMEN; EXPRESSION; DENSITY; PACKAGE; LINKAGE;
D O I
10.1186/s12885-022-10170-w
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background Breast cancer (BC) is one of the most prevalent cancers worldwide but its etiology remains unclear. Obesity is recognized as a risk factor for BC, and many obesity-related genes may be involved in its occurrence and development. Research assessing the complex genetic mechanisms of BC should not only consider the effect of a single gene on the disease, but also focus on the interaction between genes. This study sought to construct a gene interaction network to identify potential pathogenic BC genes. Methods The study included 953 BC patients and 963 control individuals. Chi-square analysis was used to assess the correlation between demographic characteristics and BC. The joint density-based non-parametric differential interaction network analysis and classification (JDINAC) was used to build a BC gene interaction network using single nucleotide polymorphisms (SNP). The odds ratio (OR) and 95% confidence interval (95% CI) of hub gene SNPs were evaluated using a logistic regression model. To assess reliability, the hub genes were quantified by edgeR program using BC RNA-seq data from The Cancer Genome Atlas (TCGA) and identical edges were verified by logistic regression using UK Biobank datasets. Go and KEGG enrichment analysis were used to explore the biological functions of interactive genes. Results Body mass index (BMI) and menopause are important risk factors for BC. After adjusting for potential confounding factors, the BC gene interaction network was identified using JDINAC. LEP, LEPR, XRCC6, and RETN were identified as hub genes and both hub genes and edges were verified. LEPR genetic polymorphisms (rs1137101 and rs4655555) were also significantly associated with BC. Enrichment analysis showed that the identified genes were mainly involved in energy regulation and fat-related signaling pathways. Conclusion We explored the interaction network of genes derived from SNP data in BC progression. Gene interaction networks provide new insight into the underlying mechanisms of BC.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Hazards of data leakage in machine learning: A study on classification of breast cancer using deep neural networks
    Samala, Ravi K.
    Chan, Heang-Ping
    Hadjiiski, Lubomir
    Koneru, Sathvik
    MEDICAL IMAGING 2020: COMPUTER-AIDED DIAGNOSIS, 2020, 11314
  • [32] Prediction of Breast Cancer Using Simple Machine Learning Algorithms
    Devi, Seeta
    Dumbre, Dipali
    Chavan, Ranjana
    2024 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATION AND APPLIED INFORMATICS, ACCAI 2024, 2024,
  • [33] Breast cancer prediction using supervised machine learning techniques
    Dadheech, Pankaj
    Kalmani, Vijay
    Dogiwal, Sanwta Ram
    Sharma, Vijay Kumar
    Kumar, Ankit
    Pandey, Saroj Kumar
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2023, 44 (03): : 383 - 392
  • [34] Machine learning applications in breast cancer prediction using mammography
    Harshvardhan, G. M.
    Mori, Kei
    Verma, Sarika
    Athanasiou, Lambros
    IMAGE AND VISION COMPUTING, 2024, 152
  • [35] Predictive Analysis Of Breast Cancer Using Machine Learning Techniques
    Agrawal, Rashmi
    INGENIERIA SOLIDARIA, 2019, 15 (29):
  • [36] Classification of Breast Cancer Data Using Machine Learning Algorithms
    Akbugday, Burak
    2019 MEDICAL TECHNOLOGIES CONGRESS (TIPTEKNO), 2019, : 429 - 432
  • [37] Predicting the recurrence of breast cancer using machine learning algorithms
    Amal Alzu’bi
    Hassan Najadat
    Wesam Doulat
    Osama Al-Shari
    Leming Zhou
    Multimedia Tools and Applications, 2021, 80 : 13787 - 13800
  • [38] Using Machine Learning Methods in Early Diagnosis of Breast Cancer
    Erkal, Begum
    Ayyildiz, Tulin Ercelebi
    TIP TEKNOLOJILERI KONGRESI (TIPTEKNO'21), 2021,
  • [39] An Optimized Framework for Breast Cancer Classification Using Machine Learning
    Michael, Epimack
    Ma, He
    Li, Hong
    Qi, Shouliang
    BIOMED RESEARCH INTERNATIONAL, 2022, 2022
  • [40] Breast Cancer Subtype Identification Using Machine Learning Techniques
    Firoozbakht, Forough
    Rezaeian, Iman
    Porter, Lisa
    Rueda, Luis
    2014 IEEE 4TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL ADVANCES IN BIO AND MEDICAL SCIENCES (ICCABS), 2014,