Stochastic projected Gross-Pitaevskii equation

被引:39
|
作者
Rooney, S. J. [1 ]
Blakie, P. B. [1 ]
Bradley, A. S. [1 ]
机构
[1] Univ Otago, Dept Phys, Jack Dodd Ctr Quantum Technol, Dunedin, New Zealand
来源
PHYSICAL REVIEW A | 2012年 / 86卷 / 05期
关键词
BOSE-EINSTEIN CONDENSATION; DYNAMICS;
D O I
10.1103/PhysRevA.86.053634
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We have achieved a full implementation of the stochastic projected Gross-Pitaevskii equation for a three-dimensional trapped Bose gas at finite temperature. Our work advances previous applications of this theory, which have only included growth processes, by implementing number-conserving scattering processes. We evaluate an analytic expression for the coefficient of the scattering term and compare it to that of the growth term in the experimental regime, showing that the two coefficients are comparable in size. We give an overview of the numerical implementation of the deterministic and stochastic terms for the scattering process, and use simulations of a condensate excited into a large amplitude breathing mode oscillation to characterize the importance of scattering and growth processes in an experimentally accessible regime. We find that in such nonequilibrium regimes the scattering can dominate over the growth, leading to qualitatively different system dynamics. In particular, the scattering causes the system to rapidly reach thermal equilibrium without greatly depleting the condensate, suggesting that it provides a highly coherent energy-transfer mechanism.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Stochastic Gross-Pitaevskii Equation for the Dynamical Thermalization of Bose-Einstein Condensates
    Savenko, I. G.
    Liew, T. C. H.
    Shelykh, I. A.
    PHYSICAL REVIEW LETTERS, 2013, 110 (12)
  • [42] Travelling waves for the Gross-Pitaevskii equation, I
    Bethuel, F
    Saut, JC
    ANNALES DE L INSTITUT HENRI POINCARE-PHYSIQUE THEORIQUE, 1999, 70 (02): : 147 - 238
  • [43] Travelling Waves for the Gross-Pitaevskii Equation II
    Fabrice Béthuel
    Philippe Gravejat
    Jean-Claude Saut
    Communications in Mathematical Physics, 2009, 285 : 567 - 651
  • [44] ON THE LINEAR WAVE REGIME OF THE GROSS-PITAEVSKII EQUATION
    Bethuel, Fabrice
    Danchin, Raphael
    Smets, Didier
    JOURNAL D ANALYSE MATHEMATIQUE, 2010, 110 : 297 - 338
  • [45] Solutions of the Gross-Pitaevskii equation in two dimensions
    Lee, MD
    Morgan, SA
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2002, 35 (13) : 3009 - 3017
  • [46] Haus/Gross-Pitaevskii equation for random lasers
    Leonetti, Marco
    Conti, Claudio
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2010, 27 (07) : 1446 - 1451
  • [47] Asymptotics for the travelling waves in the Gross-Pitaevskii equation
    Gravejat, P
    ASYMPTOTIC ANALYSIS, 2005, 45 (3-4) : 227 - 299
  • [48] Dynamics of a Gross-Pitaevskii Equation with Phenomenological Damping
    Colucci, Renato
    Chacon, Gerardo R.
    Vargas, Andres
    INTERNATIONAL JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 2013
  • [49] On the linear wave regime of the Gross-Pitaevskii equation
    Fabrice Béthuel
    Raphaël Danchin
    Didier Smets
    Journal d'Analyse Mathématique, 2010, 110 : 297 - 338
  • [50] Formal analytical solutions for the Gross-Pitaevskii equation
    Trallero-Giner, C.
    Drake-Perez, Julio C.
    Lopez-Richard, V.
    Birman, Joseph L.
    PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (18) : 2342 - 2352