Bifurcation from stability to instability for a free boundary problem arising in a tumor model

被引:93
|
作者
Friedman, A
Hu, B
机构
[1] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
[2] Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA
关键词
D O I
10.1007/s00205-005-0408-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a time-dependent free boundary problem with radially symmetric initial data: sigma(t) - Delta sigma + sigma = 0 if r < R( t), sigma = (sigma) over bar on r = R(t), R-2(t) R(t) = mu integral(R(t))(0) (sigma - (sigma) over tilde )r(2)dr, and sigma(r, 0) = sigma(0)(r) in {r < R(0)} where R(0) is given. This is a model for tumor growth, with nutrient concentration (or tumor cells density) sigma(r, t) and proliferation rate mu(sigma - (sigma) over tilde). If 0 < (sigma) over tilde < (sigma) over bar, then there exists a unique stationary solution (sigma(S)(r), R-S), where R-S depends only on the number (sigma) over tilde/(sigma) over bar. We prove that there exists a number mu(*), such that if mu < mu(*)... then the stationary solution is stable with respect to non-radially symmetric perturbations, whereas if mu > mu(*) then the stationary solution is unstable.
引用
收藏
页码:293 / 330
页数:38
相关论文
共 50 条