asymptotic critical value behaviour;
Bonferroni test procedure;
familywise error rate;
hazard rate;
independent p-values;
multiple comparisons;
multiple level;
multiple test procedure;
order statistics;
step-down test;
step-up test;
D O I:
10.1016/S0378-3758(98)00233-X
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
We consider the problem of comparing step-down and step-up multiple test procedures for testing n hypotheses when independent p-values or independent test statistics are available. The defining critical values of these procedures for independent test statistics are asymptotically equal, which yields a theoretical argument for the numerical observation that the step-up procedure is mostly more powerful than the step-down procedure. The main aim of this paper is to quantify the differences between the critical values more precisely. As a by-product we also obtain more information about the gain when we consider two subsequent steps of these procedures. Moreover, we investigate how liberal the step-up procedure becomes when the step-up critical values are replaced by their step-down counterparts or by more refined approximate values. The results for independent p-values are the basis for obtaining corresponding results when independent real-valued test statistics are at hand. It turns out that the differences of step-down and step-up critical values as well as the differences between subsequent steps tend to zero for many distributions, except for heavy-tailed distributions. The Cauchy distribution yields an example where the critical values of both procedures are nearly linearly increasing in n. (C) 1999 Published by Elsevier Science B.V. All rights reserved.