High-resolution, high-aspect-ratio iridium-nickel composite nanoimprint molds

被引:3
|
作者
Lee, Chang-Sheng [1 ]
Lee, Yeong-Yuh [1 ]
Chong, Karen S. L. [1 ]
Wang, Li [2 ]
Dais, Christian [2 ]
Clube, Francis [2 ]
Solak, Harun H. [2 ]
Mohacsi, Istvan [3 ]
David, Christian [3 ]
Bischofberger, Roger [4 ]
机构
[1] ASTAR, Inst Mat Res & Engn, 2 Fusionopolis Way,Innovis 08-03, Singapore 138634, Singapore
[2] Eulitha AG, Studacherstr 7b, CH-5416 Kirchdorf, Switzerland
[3] Paul Scherrer Inst, CH-5232 Villigen, Switzerland
[4] MicroSWISS AG, Neugruet 45, FL-9496 Balzers, Liechtenstein
来源
关键词
DISPLACEMENT TALBOT LITHOGRAPHY; SOFT LITHOGRAPHY; LARGE-AREA; REPLICATION; IMPRINT; STAMP;
D O I
10.1116/1.4967696
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Nanoimprint molds are traditionally made from silicon. Silicon molds suffer from distinct disadvantages as they are brittle, prone to damage, scratch easily, and can only be used in a planar format. This has limited their use in higher throughput systems where flexible molds are required such as in roll-to-roll and roll-to-plate systems. Nickel (Ni) molds, which are now de-rigueur in both batch and roller nanoimprint processes, can be used to address these problems, but fabrication and durability issues limit their availability and effectiveness in production. In this report, the authors introduce a fabrication route that has the potential to overcome the fabrication, quality, and wear problems of Ni molds. The new process relies on atomic layer deposition to form a smooth and high-aspect ratio patterned layer of iridium (Ir) on a Ni substrate. A large area nanohole array mold was fabricated using displacement Talbot lithography to demonstrate this process. The authors show the use of such composite molds via a batch thermal imprinting process to fabricate 70nm hole arrays onto polycarbonate templates with a 610% tolerance in diameter between the polycarbonate and the composite mold, and less than 1% of defects. (C) 2016 American Vacuum Society.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] INTEGRATED MULTILAYER HIGH-ASPECT-RATIO MILLIACTUATORS
    FAN, LS
    WOODMAN, SJ
    CRAWFORTH, L
    [J]. SENSORS AND ACTUATORS A-PHYSICAL, 1995, 48 (03) : 221 - 227
  • [32] OPTIMIZED HIGH-ASPECT-RATIO DIFFUSIONAL MICROMIXERS
    Maha, Amit
    Palaparthy, Vamsidhar
    Soper, Steven A.
    Murphy, Michael C.
    Nikitopoulos, Dimitris E.
    [J]. PROCEEDINGS OF THE ASME FLUIDS ENGINEERING DIVISION SUMMER CONFERENCE - 2008, VOL 2, 2009, : 555 - 556
  • [33] THEORY OF HIGH-ASPECT-RATIO JET FLAP
    KERNEY, KP
    [J]. AIAA JOURNAL, 1971, 9 (03) : 431 - &
  • [34] High-aspect-ratio bulk micromachining of titanium
    Aimi, MF
    Rao, MP
    Macdonald, NC
    Zuruzi, AS
    Bothman, DP
    [J]. NATURE MATERIALS, 2004, 3 (02) : 103 - 105
  • [35] SMT REQUIREMENTS FOR HIGH-ASPECT-RATIO PTHS
    LANGAN, JP
    [J]. PLATING AND SURFACE FINISHING, 1992, 79 (01): : 42 - 43
  • [36] High-aspect-ratio bulk micromachining of titanium
    Marco F. Aimi
    Masa P. Rao
    Noel C. MacDonald
    Abu Samah Zuruzi
    David P. Bothman
    [J]. Nature Materials, 2004, 3 : 103 - 105
  • [37] LIMITATIONS OF ELECTROPLATING ON HIGH-ASPECT-RATIO PTHS
    LANGAN, JP
    [J]. PLATING AND SURFACE FINISHING, 1992, 79 (02): : 40 - 40
  • [38] Controlled Collapse of High-Aspect-Ratio Nanostructures
    Duan, Huigao
    Yang, Joel K. W.
    Berggren, Karl K.
    [J]. SMALL, 2011, 7 (18) : 2661 - 2668
  • [39] PULSED DEPOSITION FOR HIGH-ASPECT-RATIO HOLES
    POSKANZER, AM
    [J]. PLATING AND SURFACE FINISHING, 1985, 72 (06): : 16 - 16
  • [40] High-aspect-ratio microstructures for magnetoelectronic applications
    Wang, T
    McCandless, AB
    Ford, S
    Kelly, KW
    Lienau, R
    Hensley, D
    Desta, Y
    Ling, ZG
    [J]. MICROMACHINING AND MICROFABRICATION PROCESS TECHNOLOGY VIII, 2003, 4979 : 464 - 471