Text Document Classification with PCA and One-Class SVM

被引:5
|
作者
Kumar, B. Shravan [1 ,2 ]
Ravi, Vadlamani [1 ]
机构
[1] Inst Dev & Res Banking Technol, Ctr Excellence Analyt, Castle Hills Rd 1, Hyderabad 500057, Andhra Pradesh, India
[2] Univ Hyderabad, Sch Comp & Informat Sci, Hyderabad 500046, Andhra Pradesh, India
关键词
Text mining; Dimensionality reduction; Document classification; Principal component analysis; One-class support vector machine; PRINCIPAL COMPONENT ANALYSIS; DIMENSION REDUCTION; SELECTION;
D O I
10.1007/978-981-10-3153-3_11
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a document classifier based on principal component analysis (PCA) and one-class support vector machine (OCSVM), where PCA helps achieve dimensionality reduction and OCSVM performs classification. Initially, PCA is invoked on the document-term matrix resulting in choosing the top few principal components. Later, OCSVM is trained on the records of the matrix corresponding to the negative class. Then, we tested the trained OCSVM with the records of the matrix corresponding to the positive class. The effectiveness of the proposed model is demonstrated on the popular datasets, viz., 20NG, malware, Syskill, & Webert, and customer feedbacks of a Bank. We observed that the hybrid yielded very high accuracies in all datasets.
引用
收藏
页码:107 / 115
页数:9
相关论文
共 50 条
  • [21] One-class classification with subgaussians
    Mamlouk, AM
    Kim, JT
    Barth, E
    Brauckmann, M
    Martinetz, T
    PATTERN RECOGNITION, PROCEEDINGS, 2003, 2781 : 346 - 353
  • [22] Overview of one-Class Classification
    Sun Wenzhu
    Hu Wenting
    Xue Zufeng
    Cao Jianping
    2019 IEEE 4TH INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING (ICSIP 2019), 2019, : 6 - 10
  • [23] Employing One-Class SVM Classifier Ensemble for Imbalanced Data Stream Classification
    Klikowski, Jakub
    Wozniak, Michal
    COMPUTATIONAL SCIENCE - ICCS 2020, PT IV, 2020, 12140 : 117 - 127
  • [24] Deep One-Class Classification
    Ruff, Lukas
    Vandermeulen, Robert A.
    Goernitz, Nico
    Deecke, Lucas
    Siddiqui, Shoaib A.
    Binder, Alexander
    Mueller, Emmanuel
    Kloft, Marius
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [25] One-Class SVM Assisted Accurate Tracking
    Fu, Keren
    Gong, Chen
    Qiao, Yu
    Yang, Jie
    Gu, Irene
    2012 SIXTH INTERNATIONAL CONFERENCE ON DISTRIBUTED SMART CAMERAS (ICDSC), 2012,
  • [26] Improving one-class SVM for anomaly detection
    Li, KL
    Huang, HK
    Tian, SF
    Xu, W
    2003 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-5, PROCEEDINGS, 2003, : 3077 - 3081
  • [27] One-Class SVM for landmine detection and discrimination
    Tbarki, Khaoula
    Ben Said, Salma
    Ksantini, Riadh
    Lachiri, Zied
    2017 INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND DIAGNOSIS (ICCAD), 2017, : 309 - 313
  • [28] Comparison of one-class SVM and two-class SVM for fold recognition
    Senf, Alexander
    Chen, Xue-wen
    Zhang, Anne
    NEURAL INFORMATION PROCESSING, PT 2, PROCEEDINGS, 2006, 4233 : 140 - 149
  • [29] A NEW ONE-CLASS SVM FOR ANOMALY DETECTION
    Chen, Yuting
    Qian, Jing
    Saligrama, Ventatesh
    2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 3567 - 3571
  • [30] Robust one-class SVM for fault detection
    Xiao, Yingchao
    Wang, Huangang
    Xu, Wenli
    Zhou, Junwu
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2016, 151 : 15 - 25