New perfect sequences from Helleseth-Gong sequences

被引:0
|
作者
Yang, Yang [1 ]
Wang, Yong [2 ]
机构
[1] Southwest Jiaotong Univ, Sch Math, Chengdu, Sichuan, Peoples R China
[2] Southwest Jiaotong Univ, Sch Phys Sci & Technol, Chengdu, Sichuan, Peoples R China
关键词
Perfect sequences; Helleseth-Gong sequences; difference system of sets; difference balanced property; d-form property; DIFFERENCE-SYSTEMS; SETS; AUTOCORRELATION; CONSTRUCTIONS; PARTITIONS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, for any given prime power q, using Helleseth-Gong sequences with ideal auto-correlation property, we propose a class of perfect sequences of length q(m)-1/q-1. As an application, a subclass of constructed perfect sequences is used to design optimal and perfect difference systems of sets.
引用
收藏
页码:112 / 116
页数:5
相关论文
共 50 条
  • [41] New Results on Nonexistence of Perfect p-Ary Sequences and Almost p-Ary Sequences
    Liu, Hai Ying
    Feng, Ke Qin
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2016, 32 (01) : 2 - 10
  • [42] New Results on Nonexistence of Perfect p-Ary Sequences and Almost p-Ary Sequences
    Hai Ying LIU
    Ke Qin FENG
    [J]. Acta Mathematica Sinica, 2016, 32 (01) : 2 - 10
  • [43] New Results on Nonexistence of Perfect p-Ary Sequences and Almost p-Ary Sequences
    Hai Ying LIU
    Ke Qin FENG
    [J]. Acta Mathematica Sinica,English Series, 2016, (01) : 2 - 10
  • [44] A new unified construction of perfect root-of-unity sequences
    Mow, WH
    [J]. IEEE ISSSTA '96 - IEEE FOURTH INTERNATIONAL SYMPOSIUM ON SPREAD SPECTRUM TECHNIQUES & APPLICATIONS, PROCEEDINGS, VOLS 1-3, 1996, : 955 - 959
  • [45] New Constructions of Perfect Gaussian Integer Sequences of Even Length
    Peng, Xiuping
    Xu, Chengqian
    [J]. IEEE COMMUNICATIONS LETTERS, 2014, 18 (09) : 1547 - 1550
  • [46] NEW BINARY SEQUENCES WITH PERFECT STAIRCASE PROFILE OF LINEAR COMPLEXITY
    YANG, YX
    [J]. INFORMATION PROCESSING LETTERS, 1993, 46 (01) : 27 - 29
  • [47] On the p-Adic Complexity of the Ding-Helleseth-Martinsen Binary Sequences
    Jing Xiaoyan
    Xu Zhefeng
    Yang Minghui
    Feng Keqin
    [J]. CHINESE JOURNAL OF ELECTRONICS, 2021, 30 (01) : 64 - 71
  • [48] On the p-Adic Complexity of the Ding-Helleseth-Martinsen Binary Sequences
    JING Xiaoyan
    XU Zhefeng
    YANG Minghui
    FENG Keqin
    [J]. Chinese Journal of Electronics, 2021, 30 (01) : 64 - 71
  • [49] On the 2-Adic Complexity of the Ding-Helleseth-Martinsen Binary Sequences
    Zhang, Lulu
    Zhang, Jun
    Yang, Minghui
    Feng, Keqin
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (07) : 4613 - 4620
  • [50] Linear complexity of Ding-Helleseth generalized cyclotomic sequences of order eight
    Liang, Yana
    Cao, Jiali
    Chen, Xingfa
    Cai, Shiping
    Fan, Xiang
    [J]. CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2019, 11 (05): : 1037 - 1056