A Model for Verifiable Grounding and Execution of Complex Natural Language Instructions

被引:0
|
作者
Boteanu, Adrian [1 ]
Howard, Thomas [2 ]
Arkin, Jacob [2 ]
Kress-Gazit, Hadas [1 ]
机构
[1] Cornell Univ, Sibley Sch Mech & Aerosp Engn, Ithaca, NY 14853 USA
[2] Univ Rochester, Hajim Sch Engn & Appl Sci, 601 Elmwood Ave, Rochester, NY 14627 USA
基金
美国国家科学基金会;
关键词
SCHEMAS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Current methods of grounding natural language instructions do not include reactive or temporal components, making these methods unsuitable for instructions describing tasks as sets of conditional instructions. We introduce the Verifiable Distributed Correspondence Graph (V-DCG) model, which enables the validation of natural language instructions by using Linear Temporal Logic (LTL) specifications together with physical world groundings. We demonstrate the V-DCG model on a physical robot and provide examples of the output our system produces for natural language instructions.
引用
收藏
页码:2649 / 2654
页数:6
相关论文
共 50 条
  • [21] Action representation formalism to interpret natural language instructions
    Univ of Pittsburgh, Pittsburgh, PA, United States
    Comput Intell, 1 (89-133):
  • [22] Natural Language Understanding: Instructions for (Present and Future) Use
    Navigli, Roberto
    PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 5697 - 5702
  • [23] Robot motion behavior training by natural language instructions
    Nie, Xian-Li
    Jiang, Ping
    Chen, Hui-Tang
    Jiqiren/Robot, 2002, 24 (03):
  • [24] Inferring Maps and Behaviors from Natural Language Instructions
    Duvallet, Felix
    Walter, Matthew R.
    Howard, Thomas
    Hemachandra, Sachithra
    Oh, Jean
    Teller, Seth
    Roy, Nicholas
    Stentz, Anthony
    EXPERIMENTAL ROBOTICS, 2016, 109 : 373 - 388
  • [25] An action representation formalism to interpret natural language instructions
    Di Eugenio, B
    COMPUTATIONAL INTELLIGENCE, 1998, 14 (01) : 89 - 133
  • [26] Unsupervised Alignment of Natural Language Instructions with Video Segments
    Naim, Iftekhar
    Song, Young Chol
    Liu, Qiguang
    Kautz, Henry
    Luo, Jiebo
    Gildea, Daniel
    PROCEEDINGS OF THE TWENTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2014, : 1558 - 1564
  • [27] From Natural Language Instructions to Structured Robot Plans
    Pomarlan, Mihai
    Koralewski, Sebastian
    Beetz, Michael
    KI 2017: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2017, 10505 : 344 - 351
  • [28] Crossmodal Language Grounding in an Embodied Neurocognitive Model
    Heinrich, Stefan
    Yao, Yuan
    Hinz, Tobias
    Liu, Zhiyuan
    Hummel, Thomas
    Kerzel, Matthias
    Weber, Cornelius
    Wermter, Stefan
    FRONTIERS IN NEUROROBOTICS, 2020, 14
  • [29] Visual execution and data visualisation in natural language processing
    Rodgers, P
    Gaizauskas, R
    Humphreys, K
    Cunningham, H
    1997 IEEE SYMPOSIUM ON VISUAL LANGUAGES, PROCEEDINGS, 1997, : 338 - 343
  • [30] NATURAL-LANGUAGE-INSTRUCTED INDUSTRIAL TASK EXECUTION
    Liu, Rui
    Webb, Jeremy
    Zhang, Xiaoli
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2016, VOL 1B, 2016,