A Near Linear Algorithm for Testing Linear Separability in Two Dimensions

被引:0
|
作者
Contassot-Vivier, Sylvain [1 ]
Elizondo, David [2 ]
机构
[1] Univ Lorraine, UMR 7503, Nancy, France
[2] De Montfort Univ, Ctr Computat Intelligence, Leicester, Leics, England
关键词
Classification; linear separability; 2D geometry;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a near linear algorithm for determining the linear separability of two sets of points in a two-dimensional space. That algorithm does not only detects the linear separability but also computes separation information. When the sets are linearly separable, the algorithm provides a description of a separation hyperplane. For non linearly separable cases, the algorithm indicates a negative answer and provides a hyperplane of partial separation that could be useful in the building of some classification systems.
引用
收藏
页码:114 / +
页数:3
相关论文
共 50 条
  • [21] OPTIMUM CONTROL OF SYSTEMS FOR PROCESS TESTING OF LINEAR DIMENSIONS
    ALEKHNOVICH, VE
    GEILER, ZS
    [J]. MEASUREMENT TECHNIQUES-USSR, 1971, 14 (04): : 524 - +
  • [22] AN ALGORITHM FOR OPTIMAL SELECTION OF DEVICES FOR MEASURING LINEAR DIMENSIONS
    PANOVA, EI
    [J]. MEASUREMENT TECHNIQUES USSR, 1992, 35 (01): : 33 - 36
  • [23] A Feedforward Constructive Neural Network Algorithm for Multiclass Tasks Based on Linear Separability
    Bertini, Joao Roberto, Jr.
    Nicoletti, Maria do Carmo
    [J]. CONSTRUCTIVE NEURAL NETWORKS, 2009, 258 : 145 - +
  • [24] Straight talk about linear separability
    Smith, JD
    Murray, MJ
    Minda, JP
    [J]. JOURNAL OF EXPERIMENTAL PSYCHOLOGY-LEARNING MEMORY AND COGNITION, 1997, 23 (03) : 659 - 680
  • [25] SEPARABILITY IN LINEAR TOPOLOGICAL-SPACES
    LOHMAN, RH
    STILES, WJ
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 42 (01) : 236 - 237
  • [26] MONOTONICITY OF LINEAR SEPARABILITY UNDER TRANSLATION
    BRUCKSTEIN, AM
    COVER, TM
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1985, 7 (03) : 355 - 358
  • [27] The geometry of linear separability in data sets
    Ben-Israel, A
    Levin, Y
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 416 (01) : 75 - 87
  • [28] The linear separability constraint in visual search
    Jolicoeur, P
    Cowan, W
    Bauer, B
    [J]. INTERNATIONAL JOURNAL OF PSYCHOLOGY, 1996, 31 (3-4) : 3361 - 3361
  • [29] Sufficient separability criteria and linear maps
    Lewenstein, Maciej
    Augusiak, Remigiusz
    Chruscinski, Dariusz
    Rana, Swapan
    Samsonowicz, Jan
    [J]. PHYSICAL REVIEW A, 2016, 93 (04)
  • [30] LINEAR AGGREGATION AND SEPARABILITY OF MODELS IN ECOLOGY
    LUCKYANOV, NK
    [J]. ECOLOGICAL MODELLING, 1984, 21 (1-2) : 1 - 12