Shock filter as the classifier for image inpainting problem using the Cahn-Hilliard equation

被引:12
|
作者
Novak, Andrej [1 ]
Reinic, Nora [1 ]
机构
[1] Univ Zagreb, Fac Sci, Dept Phys, Bijenicka cesta 32, Zagreb 10000, Croatia
关键词
Image inpainting; Cahn-Hilliard equation; Shock filter; NAVIER-STOKES; MODEL; TIME;
D O I
10.1016/j.camwa.2022.07.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a problem of digital image inpainting using the modified Cahn-Hilliard equation, where the standard double well potential is replaced by the shock filter. Using fixed point arguments and Aubin-Lions lemma we prove the existence and uniqueness of the solution. In addition, we introduce a numerical method based on the convexity splitting idea to approximate the solutions of the considered problem. We apply this method to several binary images and demonstrate that this approach naturally extends image features and preserves their edges.
引用
收藏
页码:105 / 114
页数:10
相关论文
共 50 条
  • [31] A Cahn-Hilliard equation with singular diffusion
    Schimperna, Giulio
    Pawlow, Irena
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (02) : 779 - 803
  • [32] Stationary solutions for the Cahn-Hilliard equation
    Wei, JC
    Winter, M
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1998, 15 (04): : 459 - 492
  • [33] Convergence of solutions to Cahn-Hilliard equation
    Rybka, P
    Hoffmann, KH
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1999, 24 (5-6) : 1055 - 1077
  • [34] A nonlocal stochastic Cahn-Hilliard equation
    Cornalba, Federico
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 140 : 38 - 60
  • [35] Local Dynamics of Cahn-Hilliard Equation
    Kashchenko, S. A.
    Plyshevskaya, S. P.
    NONLINEAR PHENOMENA IN COMPLEX SYSTEMS, 2019, 22 (01): : 93 - 97
  • [36] SPINODAL DECOMPOSITION FOR THE CAHN-HILLIARD EQUATION
    GRANT, CP
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1993, 18 (3-4) : 453 - 490
  • [37] NONLINEAR ASPECTS OF THE CAHN-HILLIARD EQUATION
    NOVICKCOHEN, A
    SEGEL, LA
    PHYSICA D, 1984, 10 (03): : 277 - 298
  • [38] Existence of solution to a Cahn-Hilliard equation
    Mourad, Ayman
    Taha, Zahraa
    ASYMPTOTIC ANALYSIS, 2022, 130 (3-4) : 387 - 408
  • [39] ENERGY METHODS FOR THE CAHN-HILLIARD EQUATION
    NOVICKCOHEN, A
    QUARTERLY OF APPLIED MATHEMATICS, 1988, 46 (04) : 681 - 690
  • [40] Caputo fractional-time of a modified Cahn-Hilliard equation for the inpainting of binary images
    Ben-loghfyry, Anouar
    Hakim, Abdelilah
    JOURNAL OF MATHEMATICAL MODELING, 2023, 11 (02): : 357 - 373