Positive solutions of a diffusive Leslie-Gower predator-prey model with Bazykin functional response

被引:13
|
作者
Zhou, Jun [1 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
来源
关键词
Leslie-Gower predator-prey model; Bazykin functional response; positive steady state solutions; multiplicity; uniqueness; stability; II SCHEMES; SYSTEMS; BIFURCATION; COMPETITION; STABILITY;
D O I
10.1007/s00033-013-0315-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a diffusive Leslie-Gower predator-prey model with Bazykin functional response and zero Dirichlet boundary condition. We show the existence, multiplicity and uniqueness of positive solutions when parameters are in different regions. Results are proved by using bifurcation theory, fixed point index theory, energy estimate and asymptotical behavior analysis.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 50 条
  • [21] Periodic solutions of delayed Leslie-Gower predator-prey models
    Huo, HF
    Li, WT
    APPLIED MATHEMATICS AND COMPUTATION, 2004, 155 (03) : 591 - 605
  • [22] Permanence, stability, and coexistence of a diffusive predator-prey model with modified Leslie-Gower and B-D functional response
    Feng, Xiaozhou
    Song, Yi
    Liu, Jianxin
    Wang, Guohui
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [23] An Impulsive Predator-Prey System with Modified Leslie-Gower Functional Response and Diffusion
    Li, Xiaoyue
    Wang, Qi
    Han, Renji
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2021, 20 (03)
  • [24] Hopf Bifurcation in a Delayed Diffusive Leslie-Gower Predator-Prey Model with Herd Behavior
    Zhang, Fengrong
    Li, Yan
    Li, Changpin
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2019, 29 (04):
  • [25] A Diffusive Leslie-Gower Type Predator-Prey Model with Two Different Free Boundaries
    Elmurodov, A. N.
    Sotvoldiyev, A. I.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2023, 44 (10) : 4254 - 4270
  • [26] The existence, bifurcation and stability of positive stationary solutions of a diffusive Leslie-Gower predator-prey model with Holling-type II functional responses
    Zhou, Jun
    Shi, Junping
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 405 (02) : 618 - 630
  • [27] Global Bifurcation in a Modified Leslie-Gower Predator-Prey Model
    Tian, Jialu
    Liu, Ping
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2023, 33 (02):
  • [28] ANALYSIS OF A LEVY-DIFFUSION LESLIE-GOWER PREDATOR-PREY MODEL WITH NONMONOTONIC FUNCTIONAL RESPONSE
    Yin, Hongwei
    Xiao, Xiaoyong
    Wen, Xiaoqing
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (06): : 2121 - 2151
  • [29] Global asymptotical stability and persistent property for a diffusive predator-prey system with modified Leslie-Gower functional response
    Yang, Wensheng
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2013, 14 (03) : 1323 - 1330
  • [30] On the dynamics of a Leslie-Gower predator-prey ternary model with intraguild
    Accarino, C.
    Capone, F.
    De Luca, R.
    Massa, G.
    RICERCHE DI MATEMATICA, 2023,