Isometries of Lorentz surfaces and convergence groups

被引:5
|
作者
Monclair, Daniel [1 ]
机构
[1] UMPA, Ecole Normale Super Lyon, F-69364 Lyon 07, France
关键词
ANOSOV-FLOWS; GEODESIC FOLIATIONS; MANIFOLDS; 3-MANIFOLDS; GEOMETRY; THEOREM;
D O I
10.1007/s00208-014-1157-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the isometry group of a globally hyperbolic spatially compact Lorentz surface. Such a group acts on the circle, and we show that when the isometry group acts non properly, the subgroups of obtained are semi conjugate to subgroups of finite covers of by using convergence groups. Under an assumption on the conformal boundary, we show that we have a conjugacy in Homeo(S-1).
引用
收藏
页码:101 / 141
页数:41
相关论文
共 50 条
  • [21] ON SEMI-GROUPS OF ISOMETRIES
    SUCIU, I
    STUDIA MATHEMATICA, 1968, 30 (01) : 101 - &
  • [22] Isometries between finite groups
    Podesta, Ricardo A.
    Vides, Maximiliano G.
    DISCRETE MATHEMATICS, 2020, 343 (11)
  • [23] GROUPS OF ISOMETRIES OF THE CUNTZ ALGEBRAS
    Conti, Roberto
    Rossi, Stefano
    DOCUMENTA MATHEMATICA, 2021, 26 : 1799 - 1815
  • [24] Discrete groups of affine isometries
    Abels, H
    JOURNAL OF LIE THEORY, 1999, 9 (02) : 321 - 349
  • [25] Geodesics and isometries of Carnot groups
    Kishimoto, I
    JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 2003, 43 (03): : 509 - 522
  • [26] TRANSITIVE GROUPS OF ISOMETRIES ON HN
    PORTNOY, E
    PACIFIC JOURNAL OF MATHEMATICS, 1981, 92 (01) : 127 - 139
  • [27] GROUPS OF ISOMETRIES OF ORLICZ SPACES
    ZAIDENBERG, MG
    DOKLADY AKADEMII NAUK SSSR, 1976, 227 (03): : 535 - 538
  • [28] Isometries of quaternionic Lie groups
    Bajo, I
    Lopera, JFT
    GEOMETRIAE DEDICATA, 2000, 81 (1-3) : 193 - 208
  • [29] An Oscillation Theorem for Groups of Isometries
    Greg Hjorth
    Geometric and Functional Analysis, 2008, 18 : 489 - 521
  • [30] ALMOST CONVERGENCE AND A THEOREM OF LORENTZ
    MADDOX, IJ
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1994, 25 (07): : 755 - 758