An automated quality control pipeline for eQTL analysis with RNA-seq data

被引:0
|
作者
Wang, Tao [1 ]
Ruan, Junpeng [2 ]
Yin, Quanwei [2 ]
Dong, Xianjun [3 ]
Wang, Yadong [1 ]
机构
[1] Harbin Inst Technol, Sch Comp Sci & Technol, Harbin, Peoples R China
[2] Northwestern Polytech Univ, Sch Comp Sci, Xian, Peoples R China
[3] Harvard Med Sch, Brigham & Womens Hosp, Boston, MA 02115 USA
关键词
eQTL; quality control; pipeline; RNA-seq; geno-type; GENOME-WIDE ASSOCIATION; GENE-EXPRESSION; METAANALYSIS;
D O I
暂无
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Expression quantitative trait loci (eQTL) analysis is of critical importance to understand the mechanism underlying trait associated variants. Evaluating and controlling the data quality of transcripts and genotypes, which are basis of eQTL analysis, remains challenging for researchers with limited computational backgrounds. There is a strong need for a user-friendly and comprehensive tool to pre-process those data sets automatically. Here we propose such a solution, eQTLQC, an automated quality control pipeline for preprocessing both RNA-seq and genotype data. The eQTLQC pipeline provides multiple informative quality control measurements and data normalization approaches. And it provides a easy-to-use configuration file for users to flexibly set up the parameters and control the pipeline. We demonstrate its utility by performing RNA-seq and genotype preprocessing on real data sets.
引用
收藏
页码:1780 / 1786
页数:7
相关论文
共 50 条
  • [21] Automated Isoform Diversity Detector (AIDD): a pipeline for investigating transcriptome diversity of RNA-seq data
    Noel-Marie Plonski
    Emily Johnson
    Madeline Frederick
    Heather Mercer
    Gail Fraizer
    Richard Meindl
    Gemma Casadesus
    Helen Piontkivska
    BMC Bioinformatics, 21
  • [22] MITGARD: an automated pipeline for mitochondrial genome assembly in eukaryotic species using RNA-seq data
    Nachtigall, Pedro G.
    Grazziotin, Felipe G.
    Junqueira-de-Azevedo, Inacio L. M.
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (05)
  • [23] VIRTUS: a pipeline for comprehensive virus analysis from conventional RNA-seq data
    Yasumizu, Yoshiaki
    Hara, Atsushi
    Sakaguchi, Shimon
    Ohkura, Naganari
    BIOINFORMATICS, 2021, 37 (10) : 1465 - 1467
  • [24] RNA-Seq Analysis Pipeline Based on Oshell Environment
    Li, Jing
    Hu, Jun
    Newman, Matthew
    Liu, Kejun
    Ge, Huanying
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2014, 11 (05) : 973 - 978
  • [25] NASA GeneLab RNA-seq consensus pipeline: standardized processing of short-read RNA-seq data
    Overbey, Eliah G.
    Saravia-Butler, Amanda M.
    Zhang, Zhe
    Rathi, Komal S.
    Fogle, Homer
    da Silveira, Willian A.
    Barker, Richard J.
    Bass, Joseph J.
    Beheshti, Afshin
    Berrios, Daniel C.
    Blaber, Elizabeth A.
    Cekanaviciute, Egle
    Costa, Helio A.
    Davin, Laurence B.
    Fisch, Kathleen M.
    Gebre, Samrawit G.
    Geniza, Matthew
    Gilbert, Rachel
    Gilroy, Simon
    Hardiman, Gary
    Herranz, Raul
    Kidane, Yared H.
    Kruse, Colin P. S.
    Lee, Michael D.
    Liefeld, Ted
    Lewis, Norman G.
    McDonald, J. Tyson
    Meller, Robert
    Mishra, Tejaswini
    Perera, Imara Y.
    Ray, Shayoni
    Reinsch, Sigrid S.
    Rosenthal, Sara Brin
    Strong, Michael
    Szewczyk, Nathaniel J.
    Tahimic, Candice G. T.
    Taylor, Deanne M.
    Vandenbrink, Joshua P.
    Villacampa, Alicia
    Weging, Silvio
    Wolverton, Chris
    Wyatt, Sarah E.
    Zea, Luis
    Costes, Sylvain, V
    Galazka, Jonathan M.
    ISCIENCE, 2021, 24 (04)
  • [26] Semblans: automated assembly and processing of RNA-seq data
    Woodcock-Girard, Miles D.
    Bretz, Eric C.
    Robertson, Holly M.
    Ramanauskas, Karolis
    Hampton-Marcell, Jarrad T.
    Walker, Joseph F.
    BIOINFORMATICS, 2025, 41 (01)
  • [27] Analysis of clustered RNA-seq data
    Park, Hyunjin
    Lee, Seungyeoun
    Kim, Ye Jin
    Choi, Myung-Sook
    Park, Taesung
    INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2017, 19 (01) : 19 - 31
  • [28] The impact of quality control in RNA-seq experiments
    Merino, Gabriela A.
    Fresno, Cristobal
    Netto, Frederico
    Netto, Emmanuel Dias
    Pratto, Laura
    Fernandez, Elmer A.
    20TH ARGENTINEAN BIOENGINEERING SOCIETY CONGRESS (XX ARGENTINE BIOENGINEERING CONGRESS AND IX CONFERENCE OF CLINICAL ENGINEERING), (SABI 2015), 2016, 705
  • [29] RSeQC: quality control of RNA-seq experiments
    Wang, Liguo
    Wang, Shengqin
    Li, Wei
    BIOINFORMATICS, 2012, 28 (16) : 2184 - 2185
  • [30] Genome-wide identification and analysis of the eQTL lncRNAs in multiple sclerosis based on RNA-seq data
    Han, Zhijie
    Xue, Weiwei
    Tao, Lin
    Lou, Yan
    Qiu, Yunqing
    Zhu, Feng
    BRIEFINGS IN BIOINFORMATICS, 2020, 21 (03) : 1023 - 1037