Comparison of optimization algorithms in parameter calibration of tank model

被引:0
|
作者
Kim, JH [1 ]
Paik, KR [1 ]
Lee, DR [1 ]
Kim, HS [1 ]
机构
[1] Korea Univ, Dept Civil Engn, Seoul 136701, South Korea
关键词
tank model; powell's method; genetic algorithm; harmony search;
D O I
暂无
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Among various deterministic rainfall-runoff models, tank model is often preferred for its simplicity. On the other hand, it requires much time and effort to obtain better results owing to the calibration of too many parameters in the model. Therefore, the demand for applying automatic calibration method has been increased. In this study, three optimization algorithms are tested for the automatic calibration: one nonlinear programming algorithm (Powell's method) and two meta-heuristic algorithms (Genetic Algorithm and Harmony Search). As a result, the two heuristic methods show a very good performance in the calibration compared to Powell's method. Attempts have been made to improve the performance of HS (Harmony Search). The improved HS shows better calibration results than GA does in a given CPU time. The Harmony Search algorithm of this study contributes in solving the biggest problem in using tank models, parameter calibration.
引用
收藏
页码:272 / 277
页数:6
相关论文
共 50 条
  • [41] Parameter optimization in FCM clustering algorithms
    Gao, XB
    Li, J
    Xie, WX
    2000 5TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS, VOLS I-III, 2000, : 1457 - 1461
  • [42] An Overview of Evolutionary Algorithms for Parameter Optimization
    Baeck, Thomas
    Schwefel, Hans-Paul
    EVOLUTIONARY COMPUTATION, 1993, 1 (01) : 1 - 23
  • [43] Parameter estimation of PEMFC model based on Harris Hawks' optimization and atom search optimization algorithms
    Mossa, Mahmoud A.
    Kamel, Omar Makram
    Sultan, Hamdy M.
    Diab, Ahmed A. Zaki
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (11): : 5555 - 5570
  • [44] Parameter estimation of PEMFC model based on Harris Hawks’ optimization and atom search optimization algorithms
    Mossa, Mahmoud A.
    Kamel, Omar Makram
    Sultan, Hamdy M.
    Diab, Ahmed A. Zaki
    Neural Computing and Applications, 2021, 33 (11) : 5555 - 5570
  • [45] Parameter estimation of PEMFC model based on Harris Hawks’ optimization and atom search optimization algorithms
    Mahmoud A. Mossa
    Omar Makram Kamel
    Hamdy M. Sultan
    Ahmed A. Zaki Diab
    Neural Computing and Applications, 2021, 33 : 5555 - 5570
  • [46] A Comparison of Stochastic and Deterministic Optimization Algorithms on Virtual In-situ Calibration in Building Systems
    Yoon, Sungmin
    Yu, Yuebin
    2017 ASHRAE WINTER CONFERENCE PAPERS, 2017,
  • [47] Parameter Meta-optimization of Metaheuristic Optimization Algorithms
    Neumueller, Christoph
    Wagner, Stefan
    Kronberger, Gabriel
    Affenzeller, Michael
    COMPUTER AIDED SYSTEMS THEORY - EUROCAST 2011, PT I, 2012, 6927 : 367 - 374
  • [48] In-Plane Flexible Ring Tire Model Parameter Identification: Optimization Algorithms
    Li, Bin
    Yang, Xiaobo
    Yang, James
    SAE INTERNATIONAL JOURNAL OF VEHICLE DYNAMICS STABILITY AND NVH, 2018, 2 (01): : 71 - 87
  • [49] Parameter Optimization of EV Battery SOC Model with Aggregator Using Evolutionary Algorithms
    Essiet, Ima
    Sun, Yanxia
    INTERNATIONAL CONFERENCE ON ELECTRICAL, COMPUTER AND ENERGY TECHNOLOGIES (ICECET 2021), 2021, : 26 - 30
  • [50] Parameter Estimation of Black Box Arc Model based on Heuristic Optimization Algorithms
    Zhang, Guogang
    Liu, Yakui
    Qi, Lu
    Xu, Youdang
    Kurrat, Michael
    PROCEEDINGS OF 2018 29TH INTERNATIONAL CONFERENCE ON ELECTRICAL CONTACTS AND 64TH IEEE HOLM CONFERENCE ON ELECTRICAL CONTACTS, 2018, : 66 - 70