Visual servoing system based on ANFIS (Adaptive Neuro Fuzzy Inference System)

被引:0
|
作者
Choi, GJ [1 ]
Lee, KS [1 ]
Ahn, DS [1 ]
机构
[1] Pukyong Natl Univ, Sch Mech Engn, Nam Gu, Pusan 608739, South Korea
关键词
visual servoing; stereovision system; ANFIS; Jacobian;
D O I
10.1117/12.444185
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Research in this visual servoing field in the past few decades has produced remarkable results, leading to many exciting expectations as well as new challenges. However, because of the complicated calculation of the inverse Jacobian, it is difficult to implement in real time. Therefore, instead of using the inverse Jacobian, this paper employs the ANFIS(Adaptive Neuro Fuzzy Inference System) approach for visual servo control of a robot manipulaton It is based on visual feedback and no prior information about the kinematics of robot and the camera calibration are unnecessary. Firstly, to efficiently control a manipulator, 3D space is divided into two 2D spaces. And then, we acquire training data from each 2D space and ANFIS is learned by the training data. We categorize the robot movement into two kinds of actions. That is, TOWARD action is performed, in the xy plane, by joint I and APPROACH action is performed, in the plane orthogonal to the xy plane, by joint 2 and joint 3. The time varying object can be tracked by controlling both actions in each plane and the simulation results show the validation of our approach.
引用
收藏
页码:211 / 218
页数:8
相关论文
共 50 条
  • [41] Detection Of Forearm Movements Using Wavelets And Adaptive Neuro-Fuzzy Inference System (ANFIS)
    Guvenc, Seyit Ahmet
    Demir, Mengu
    Ulutas, Mustafa
    2014 IEEE INTERNATIONAL SYMPOSIUM ON INNOVATIONS IN INTELLIGENT SYSTEMS AND APPLICATIONS (INISTA 2014), 2014, : 192 - 196
  • [42] APPLICATION OF ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM (ANFIS) TO PREDICT THE WEAR OF FORGING TOOLS
    Hawryluk, Marek
    Mrzyglod, Barbara
    METAL 2016: 25TH ANNIVERSARY INTERNATIONAL CONFERENCE ON METALLURGY AND MATERIALS, 2016, : 378 - 385
  • [43] Discharge predicted in compound channels using adaptive neuro-fuzzy inference system (ANFIS)
    Khattab, Noor I. I.
    Mohammed, Ahmed Y. Y.
    Mala Obaida, Arwa A. A.
    OPEN ENGINEERING, 2023, 13 (01):
  • [44] Predicting of daily reference evapotranspiration via Adaptive Neuro-Fuzzy Inference System( ANFIS)
    Cai, JB
    Liu, QX
    Liu, Y
    Land and Water Management: Decision Tools and Practices, Vols 1 and 2, 2004, : 485 - 489
  • [45] Application of adaptive neuro-fuzzy inference system (ANFIS) for modeling solar still productivity
    Mashaly, Ahmed F.
    Alazba, A. A.
    JOURNAL OF WATER SUPPLY RESEARCH AND TECHNOLOGY-AQUA, 2017, 66 (06): : 367 - 380
  • [46] Earthquake magnitude prediction by adaptive neuro-fuzzy inference system (ANFIS) based on fuzzy C-means algorithm
    Mirrashid, Masoomeh
    NATURAL HAZARDS, 2014, 74 (03) : 1577 - 1593
  • [47] Earthquake magnitude prediction by adaptive neuro-fuzzy inference system (ANFIS) based on fuzzy C-means algorithm
    Masoomeh Mirrashid
    Natural Hazards, 2014, 74 : 1577 - 1593
  • [48] A Predictive Visual Analytics Evaluation Approach Based on Adaptive Neuro-Fuzzy Inference System
    Amri, Saber
    Ltifi, Hela
    Ben Ayed, Mounir
    COMPUTER JOURNAL, 2019, 62 (07): : 977 - 1000
  • [49] Fuzzy nonparametric regression based on an adaptive neuro-fuzzy inference system
    Danesh, Sedigheh
    Farnoosh, Rahman
    Razzaghnia, Tahereh
    NEUROCOMPUTING, 2016, 173 : 1450 - 1460
  • [50] Development of an expert configuration of stand-alone power PV system based on adaptive Neuro-Fuzzy inference system (ANFIS)
    Mellit, Adel
    CIRCUITS AND SYSTEMS FOR SIGNAL PROCESSING , INFORMATION AND COMMUNICATION TECHNOLOGIES, AND POWER SOURCES AND SYSTEMS, VOL 1 AND 2, PROCEEDINGS, 2006, : 893 - 896