Abdominal atlas mapping in CT and MR volume images using a normalized abdominal coordinate system

被引:4
|
作者
Wang, Hongkai [1 ]
Bai, Jing [1 ]
Zhou, Yongxin [1 ]
Zhang, Yonghong [1 ]
机构
[1] Tsinghua Univ, Sch Med, Dept Biomed Engn, Med Imaging Lab, Beijing 100084, Peoples R China
关键词
body-based coordinate system; atlas-mapping; registration; organ segmentation; medical imaging;
D O I
10.1016/j.compmedimag.2008.04.004
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In this paper, a normalized abdominal coordinate system is defined tor abdominal atlas mapping in CT and MR volume images. This coordinate system is independent of both the abdomen size and the respiratory motion. A real-time atlas mapping algorithm based oil this coordinate system is also proposed. The purpose of this algorithm is to provide initial positions for abdominal or-an segmentation. This algorithm reckons in the respiration phase and the fat amount to compensate organ translations. With this algorithm, rough positions of the target organs are found rapidly, and accurate segmentation results are obtained based on the mapping results. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:442 / 451
页数:10
相关论文
共 50 条
  • [1] A normalized thoracic coordinate system for atlas mapping in 3D CT images
    Wang, Hongkai
    Bai, Jing
    Zhang, Yonghong
    PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2008, 18 (01) : 111 - 117
  • [2] A normalized thoracic coordinate system for atlas mapping in 3D CT images
    Hongkai Wang
    Progress in Natural Science, 2008, (01) : 111 - 117
  • [3] Estimating CT from MR Abdominal Images Using Novel Generative Adversarial Networks
    Qian, Pengjiang
    Xu, Ke
    Wang, Tingyu
    Zheng, Qiankun
    Yang, Huan
    Baydoun, Atallah
    Zhu, Junqing
    Traughber, Bryan
    Muzic, Raymond F., Jr.
    JOURNAL OF GRID COMPUTING, 2020, 18 (02) : 211 - 226
  • [4] Estimating CT from MR Abdominal Images Using Novel Generative Adversarial Networks
    Pengjiang Qian
    Ke Xu
    Tingyu Wang
    Qiankun Zheng
    Huan Yang
    Atallah Baydoun
    Junqing Zhu
    Bryan Traughber
    Raymond F. Muzic
    Journal of Grid Computing, 2020, 18 : 211 - 226
  • [5] Automated volume measurement of abdominal adipose tissue from entire abdominal cavity in Dixon MR images using deep learning
    Takahashi, Masato
    Takenaga, Tomomi
    Nomura, Yukihiro
    Hanaoka, Shouhei
    Hayashi, Naoto
    Nemoto, Mitsutaka
    Nakao, Takahiro
    Miki, Soichiro
    Yoshikawa, Takeharu
    Kobayashi, Tomoya
    Abe, Shinji
    RADIOLOGICAL PHYSICS AND TECHNOLOGY, 2023, 16 (01) : 28 - 38
  • [6] Automated volume measurement of abdominal adipose tissue from entire abdominal cavity in Dixon MR images using deep learning
    Masato Takahashi
    Tomomi Takenaga
    Yukihiro Nomura
    Shouhei Hanaoka
    Naoto Hayashi
    Mitsutaka Nemoto
    Takahiro Nakao
    Soichiro Miki
    Takeharu Yoshikawa
    Tomoya Kobayashi
    Shinji Abe
    Radiological Physics and Technology, 2023, 16 : 28 - 38
  • [7] Organ volume assessment using abdominal CT
    Boone, JM
    Geraghty, EB
    McGahan, JP
    RADIOLOGY, 2002, 225 : 451 - 451
  • [8] Estimation of Subcutaneous and Visceral Fat Tissue Volume on Abdominal MR Images
    Spasojevic, Aleksandar
    Stojanov, Oliver
    Turukalo, Tatjana Loncar
    Sveljo, Olivera
    2014 12TH SYMPOSIUM ON NEURAL NETWORK APPLICATIONS IN ELECTRICAL ENGINEERING (NEUREL), 2014, : 217 - 220
  • [9] ABDOMINAL VENOUS SYSTEM - ASSESSMENT USING MR
    HRICAK, H
    AMPARO, E
    FISHER, MR
    CROOKS, L
    HIGGINS, CB
    RADIOLOGY, 1985, 156 (02) : 415 - 422
  • [10] Liver Segmentation in Abdominal CT Images Using Probabilistic Atlas and Adaptive 3D Region Growing
    Rafiei, Shima
    Karimi, Nader
    Mirmahboub, Behzad
    Najarian, Kayvan
    Felfeliyan, Banafsheh
    Samavi, Shadrokh
    Soroushmehr, S. M. Reza
    2019 41ST ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2019, : 6310 - 6313