Simple Modules for Modular Lie Superalgebras W(0 | n), S(0 | n), and K(n)

被引:0
|
作者
Wei, Zhu [1 ]
Zhang, Qingcheng [1 ]
Zhang, Yongzheng [1 ]
Wang, Chunyue [2 ]
机构
[1] NE Normal Univ, Sch Math & Stat, Changchun 130024, Peoples R China
[2] Jilin Teachers Inst Engn & Technol, Sch Appl Sci, Changchun 130052, Peoples R China
关键词
SIMPLE RESTRICTED MODULES; CARTAN TYPE; GRADED MODULES; ALGEBRAS; REPRESENTATIONS; CLASSIFICATION;
D O I
10.1155/2015/250570
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper constructs a series of modules from modular Lie superalgebras W(0 vertical bar n), S(0 vertical bar n) and K(n) over a field of prime characteristic P not equal 2. Cartan subalgebras, maximal vectors of these modular Lie superalgebras, can be solved. With certain properties of the positive root vectors, we obtain that the sufficient conditions of these modules are irreducible L-modules, where L = W(0 vertical bar n), S(0 vertical bar n), and K(n).
引用
下载
收藏
页数:8
相关论文
共 50 条
  • [41] N-graded modules for Z-graded modular vertex superalgebras
    Li, Haisheng
    Mu, Qiang
    JOURNAL OF ALGEBRA, 2023, 633 : 619 - 647
  • [42] IRREDUCIBLE STAR-REPRESENTATIONS OF LIE-SUPERALGEBRAS B(0,N) WITH FINITE-DEGENERATED VACUUM
    BLANK, J
    HAVLICEK, M
    JOURNAL OF MATHEMATICAL PHYSICS, 1986, 27 (12) : 2823 - 2831
  • [43] Towards the finiteness of π* L K (n) S0
    Devinatz, Ethan S.
    ADVANCES IN MATHEMATICS, 2008, 219 (05) : 1656 - 1688
  • [44] REACTIONS K-N-!K'-N AND K-N-!KBAR0N'- AT 3 GEV/C
    BAKKER, G
    HOOGLAND, W
    TENNER, AG
    WIT, SAD
    MINGUZZI, A
    SERRA, P
    MERRILL, D
    SCHEUER, JC
    LALOUM, M
    ROUGE, A
    NUCLEAR PHYSICS B, 1970, B 16 (01) : 53 - &
  • [45] On a simple model of X0 (N)
    Kodrnja, Iva
    MONATSHEFTE FUR MATHEMATIK, 2018, 186 (04): : 653 - 661
  • [46] On a simple model of X0(N)
    Kodrnja, Iva
    arXiv, 2017,
  • [47] Hyperelliptic modular curves X-0*(N)
    Hasegawa, Y
    ACTA ARITHMETICA, 1997, 81 (04) : 369 - 385
  • [48] Bielliptic modular curves X0*(N)
    Bars, Francesc
    Gonzalez, Josep
    JOURNAL OF ALGEBRA, 2020, 559 : 726 - 759
  • [49] GONALITY OF THE MODULAR CURVE X0(N)
    Najman, Filip
    Orlic, Petar
    MATHEMATICS OF COMPUTATION, 2023, : 863 - 886
  • [50] Bielliptic modular curves X0+(N)
    Jeon, Daeyeol
    JOURNAL OF NUMBER THEORY, 2018, 185 : 319 - 338